EXPERIMENTAL STUDY ON THE BEHAVIOUR OF L-SHAPED COLUMNS FABRICATED USING CONCRETE-FILLED STEEL TUBES UNDER ECCENTRIC LOADS

Qing-Qing Xiong 1, Wang Zhang 1, 2, Zhi-Hua Chen 2, Ting Zhou 3 and Jia-Hui Qian 1

1 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China
2 Department of Civil Engineering, Tianjin University, Tianjin, China
3 Department of Architecture, Tianjin University, Tianjin, China

ABSTRACT

In this study, the eccentric compression properties of L-shaped columns fabricated using concrete-filled steel tubes were investigated. The eccentricity was used as a parameter to analyse the deformation development, failure mode and ultimate carrying capacity of these columns. The test result indicated that the LCFST-D columns had a good ductility and bearing capacity. Compared with LCFST columns under identical eccentricity, the LCFST-D columns had a higher bearing capacity, over 20%, and significantly higher ductility. The double vertical steel plates filled with concrete efficiently improved the collaboration among the monococonns, strengthened their integrity and fully utilized the material properties. The test study used a finite element model to analyse the entire deformation process of LCFST-D columns and the interaction among monococonns to determine the effects of the eccentricity, vertical steel plate thickness, and steel pipe thickness on the performance of these columns under eccentric compression. The test result showed that overall bending and buckling were the failure modes of the LCFST-D columns, during which the three monococonns bulged first. The eccentricity was a key factor that affected the eccentric load bearing capacity of these columns. Increasing the eccentricity notably decreased the bearing capacity of the columns. Increasing the steel pipe thickness delayed the local buckling of a monococon, which increased its bearing capacity. Based on this analysis, a formula to predict the eccentric compression capacity of LCFST-D columns was proposed. The error between calculation results and test data was less than 10%, and the accuracy was verified by the test results.

KEYWORDS

LCFST-D columns; Eccentric compression experiment; Finite element analysis; Compression and bending behaviour; Bearing capacity

1. Introduction

A concrete-filled steel tube (CFST) column utilizes the advantages of both concrete and steel tubes, which have a high bearing capacity and ductility [1–9]. Scholars have extensively studied square, rectangular, and circular CFST columns [10–13]. With the development of the application of CFST columns, to enhance the seismic properties and carrying capacity of CFST columns, many academics have introduced special-shaped CFST columns with structural forms [14]. Special-shaped CFST columns have a favourable performance because they combine the advantages of CFST columns and special-shaped columns. The capability of a CFST column to be mosaicaked into walls is the main advantage of this type of column, which enables one to place columns without disturbing the available space of buildings and to reduce the amount of material used. Therefore, this new type of structure has received widespread attention [15–16].

There are three types of special-shaped CFST columns: Special-shaped CFST columns (Fig. 1(a)), multi-cell special-shaped CFST columns [17], and special-shaped columns fabricated using CFSTs [18–19].

![Fig. 1 Different structural forms of L-shaped CFST columns](image)

Special-shaped CFST columns consist of special-shaped steel tubes, e.g., T-shaped, L-shaped, or cross-shaped steel tubes, which are filled with concrete. The major disadvantage of this type of column is the negligible effect of contraction provided by the wall of the steel pipe on the concrete core. After torsion and lateral deformation, large cracks easily form between the concrete and steel pipe on the long side of a special-shaped column, causing a rapid decrease in ductility and bearing capacity. Therefore, many scholars have optimized and improved special-shaped CFST columns [20].

Tu et al. [20] introduced a multi-cell, composite, L-shaped CFST (MS-CFST) column (Fig. 1(b)). This column is formed by welding three steel pipes together. This column design improves the constraint around the concrete core, but the quality of the vertical welded seam among the steel pipes cannot be guaranteed.

Yang and Wang et al. [22–25] employed a steel rib in an L-shaped CFST column (Fig. 1(c)). This structure can postpone the partial buckling of the steel pipe, but it cannot effectively improve the constraint surrounding the core concrete. In Zuo et al. [26] and Cai et al. [27], the mechanical performances of L-shaped CFST columns were improved by installing binding bars (Fig. 1(d)). This method can effectively improve the constraint of the concrete core area and increase the ductility of concrete and bearing capacity. However, there are many holes in this column type, which results in weak areas and easily produces stress concentrations. Lin et al. [28] adopted an approach that included welding angle steel strips longitudinally on the inner surfaces of special-shaped steel tubes, as shown in Fig. 1(e).

Chen et al. [29–30] introduced a new type of special-shaped CFST column that has a good cooperative working performance and seismic performance. The column was composed of monococonns connected by steel plates or welded lacing bars. The connection pattern has since been developed from welded lacing bars to vertical steel plates [31–33] (Fig. 2).

![Fig. 2 LCFST column structure](image)

Because columns of concrete-filled steel tubes connected by a vertical steel plate (LCFST columns) have poor monococonn collaborative performance and their bearing capacity cannot satisfy the demands of high-rise structures, this thesis presents a new type of L-shaped column manufactured using CFSTs connected by double vertical steel plates (LCFST-D columns) (Fig. 3). This mode of connection improves the cooperative performance, adjusts to the characteristics of the materials and improves the bearing capacity. This type of column has good seismic performance. This new structural system has been used in many practical projects (Fig. 4).

In this study, an eccentric compression experiment was performed on...
LCFST-D columns. We analysed the mechanical performance and behaviours of LCFST-D columns under eccentric compression by using three-dimensional nonlinear finite element models. This study discussed the effects of the thickness of the steel pipe and steel plate on its eccentric bearing capacity. A calculation method of the slenderness ratio for LCFST-D columns was introduced. The overall stability of the LCFST-D column type was discussed.

Table 1
Details of the test specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>L (mm)</th>
<th>Steel tube size (mm)</th>
<th>Vertical steel plate Width D (mm)</th>
<th>Thickness t2 (mm)</th>
<th>Eccentricity (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-0</td>
<td>2000</td>
<td>100 × 100 × 5.75</td>
<td>100</td>
<td>5.75</td>
<td>0</td>
</tr>
<tr>
<td>D-40</td>
<td>2000</td>
<td>100 × 100 × 5.75</td>
<td>100</td>
<td>5.75</td>
<td>80</td>
</tr>
<tr>
<td>D-80</td>
<td>2000</td>
<td>100 × 100 × 5.75</td>
<td>100</td>
<td>5.75</td>
<td>80</td>
</tr>
<tr>
<td>E-0 [33]</td>
<td>2000</td>
<td>100 × 100 × 5.75</td>
<td>100</td>
<td>5.75</td>
<td>0</td>
</tr>
<tr>
<td>E-40</td>
<td>2000</td>
<td>100 × 100 × 5.75</td>
<td>100</td>
<td>5.75</td>
<td>80</td>
</tr>
<tr>
<td>E-80 [33]</td>
<td>2000</td>
<td>100 × 100 × 5.75</td>
<td>100</td>
<td>5.75</td>
<td>80</td>
</tr>
</tbody>
</table>

2. Experimental analyses

2.1. Specimen design and mechanical properties of the materials

In the eccentric compression experiment, the effect of the eccentricity and connection patterns were studied. The LCFST-D columns in this study were labelled D-0, D-40 and D-80, and Fig. 5 (a) shows the details of these test specimens. The LCFST columns in this study were labelled E-0 [33], E-40 [33] and E-80 [33], and Fig. 5 (b) shows the details of these specimens. Table 1 presents the sectional and geometric sizes of the specimens. The height of each specimen was 2000 mm. The steel pipe cross-section sizes were 100 mm × 100 mm × 5.75 mm in the columns. To prevent the partial buckling of both ends of the column during loading, cover plates were welded at both ends of the column. The material strength of a specimen is shown in Table 2.

Table 2
Mechanical properties of the concrete and steel

<table>
<thead>
<tr>
<th>Material</th>
<th>Size and thickness (mm)</th>
<th>fy (MPa)</th>
<th>fc (MPa)</th>
<th>Ey (MPa)</th>
<th>ey (με)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel tube</td>
<td>100 × 5.75</td>
<td>381</td>
<td>476</td>
<td>2.01×10^5</td>
<td>2314</td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
<td>f′u = 33.4 N/mm²</td>
<td></td>
</tr>
<tr>
<td>Vertical steel plate</td>
<td>5.75</td>
<td>368</td>
<td>458</td>
<td>1.75×10^5</td>
<td>1578</td>
</tr>
</tbody>
</table>

2.2. Test setup and loading procedure

This test used a 1000-kN universal testing machine for loading and applied an eccentric load by welding rigid pads at the loading points at both ends of the specimen (Fig. 6). The loading point of a specimen was at the symmetry axis of the specimen, and the eccentricity was tested at 0 mm, 40 mm and 80 mm (Fig. 7).

Fig. 6 Test setup and instrumentation layout

The displacement, load and strain were measured by a DH-3816 static strain test system. We measured the longitudinal and lateral displacements by using 19 linear variable displacement transducers (LVDTs). Strain gauges were set on the top, centre and bottom positions of these columns to measure the strain.

Fig. 7 Arrangement of the loading point and LVDTs

Preloading was conducted before the formal test. The loading method is hierarchical loading. The loads of every phase were approximately 1/10 of the forecasted eccentrically loaded capacity and were applied for 3 min at each grade. The loading stopped when it reached 83% of the peak load.

3. Test results and analysis

3.1. Damage and failure mode

To conveniently describe the test results, the characteristics of the specimens are re illustrated in Fig. 8.

With the continuous increase in lateral deflection, the LCFST-D columns developed obvious bending deformation and finally lost stability. All the specimens showed partial buckling of the monocolumns after the peak load. D-0 first developed partial buckling, followed by D-40. The welded junction between X-VSP-N/Y-VSP-W and the central monocolumn (CMC) was pulled,
and cracks appeared 300 mm from the top of D-40, which resulted in stress concentrations at the weld crack. The overall deformation of D-40 did not continuously intensify, but local buckling at the weld crack continuously developed. Finally, D-80 developed local buckling. The failure mode of D-80 was dominated by overall bending deformation with maximum deflection at the middle and local buckling at the column bottom and top (Fig. 9). Specimens with smaller eccentricities exhibited less overall bending, while the steel pipe and vertical steel plates developed considerable and concentrated local buckling. Conversely, overall bending was the main failure mode of the specimens with larger eccentricities, accompanied by slight local buckling at the ends of the monocolumns. Both D-40 and D-80 exhibited bending and buckling around the weak X’-X’ axis.

Fig. 8 Features of the specimens

Fig. 9 Failure modes of the tested specimens

3.2. Load-longitudinal displacement response

Fig. 10 Load-longitudinal displacement curves of the specimens

The load-longitudinal displacement curves of the LCFS columns [33] under different eccentricities (0 mm, 40 mm, and 80 mm) are shown in Fig. 9 (d). With identical material properties and section sizes of the monocolumns, the LCFS-D columns exhibited significantly higher carrying capacity than the LCFS columns. With identical eccentricity, the carrying capacities of D-0, D-40, and D-80 were 21.3%, 60%, and 65.5% higher than those of the corresponding LCFS columns (E-0 [33], E-40 [33], and E-80 [33]), respectively.

Table 3

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Yield point (N_y) (kN)</th>
<th>Peak point (N_u) (kN)</th>
<th>Ultimate point (N_{ud}) (kN)</th>
<th>(S_I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-0</td>
<td>906 4048 176 4680 40.05 3978 1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-40</td>
<td>1525 3370 425 3884 64.7 3301 0.830</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-80</td>
<td>254 2968 475 3359 73 2855 0.718</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: \(d_l\) is the yielding displacement, \(N_y\) is the yielding load, \(N_u\) is the peak load, \(d_{ud}\) is the ultimate displacement, and \(N_{ud}\) is the ultimate load.

3.3. Load-lateral deflection relationship

With increasing eccentricity, the rigidity and peak load decreased, whereas the platform segment of the load-lateral deflection curves increased, which indicates that there was one segment after the peak load in which the specimen loads did not increase but the lateral deflection quickly increased. Moreover, the lateral deflection at the peak load significantly increased. Specimens with smaller eccentricities had longer elastic stages. A larger eccentricity corresponded to a greater growth rate of the lateral deflection (Fig. 11).

Fig. 11 Load-lateral deflection curves of the middle sections of the specimens

3.4. Load-deflection curves

The load-deflection curves of these columns with several heights and loads are shown in Fig. 12. The X axis-side monocolumn (X-SMC) and Y axis-side monocolumn (Y-SMC) had basically identical load-deflection curves, and the deformation of the LCFS-D column was symmetric. The three monocolumns had similar load-deflection curves, which indicates that the three monocolumns...
can coordinate well. The bending deflection in the middle of the CMC was relatively large, whereas the deflection in the middle of the vertical steel plate was relatively small.

Under small loads, the deflection deformation in the middle of the specimens was relatively slight. The deflection growth was basically in direct proportion to the load growth. When the load increased to 70–80% of the peak load, the deflection in the middle of the specimens began to dramatically increase due to the second-order effect. When the deflection at the middle of the specimens reached a critical value, the growth rate of the second-order moment began to exceed the growth rate of the sectional resistance moment, the increase in bearing capacity decelerated, and the deflection in the middle of the specimens sharply increased. The growth rate of the lateral deflection in the middle of the specimens was positively correlated with the eccentricity. The welded joint between the CMC, which is 300 mm from the top of D-80, and the vertical steel plate was pulled and cracked, which caused stress concentrations. Therefore, the local lateral deformation was relatively large. The load-deflection curve of D-80 was symmetric.

The SI decreased with increased eccentricity, and the reduction rate gradually declined. The SI decreased by 17% when the eccentricity was 40 mm, and the SI further decreased by 13.5% when the eccentricity increased to 80 mm. Given the same eccentricity, the LCFST-D columns had notably higher SI than the LCFST columns. The reason is that compared to the steel linking plates, the concrete in the double vertical steel plates effectively enhanced the monolayer coordination and internal force transmission, preventing the primitive buckling of these vertical steel plates and better utilizing the material properties. The SI of D-40 was 30.9% greater than that of E-40, and the SI of D-80 was 35.5% greater than that of E-80 (Fig. 13).

3.6. Vertical strain distributions in the middle cross-section

Fig. 14 shows the distribution of vertical strain under different loading conditions of the evaluated columns. The longitudinal strain in the section increased with increasing load. The CMC bore tension, and the steel plate of the SMC first yielded under pressure. Since the connecting plate was near the neutral axis, the strain was small. Before the load reached 0.6 Nu, the mid-span section strain of the entire specimen was linearly distributed along the section height, and the longitudinal strain basically conformed to the assumption of a flat section. When the load exceeded 0.6 Nu, the strain distribution in the mid-span section along the section height deviated from the assumption of a flat section due to the slight bulge of the steel plate before reaching the peak load. The comparative analysis found that with increasing eccentricity, the growth rate of the longitudinal strain in the CMC and SMC increased.

3.5. Discussion of SI

The carrying capacity of the LCFST-D columns was evaluated based on the strength index (SI) as follows [9]:

\[
SI = \frac{N_e}{A_s f_y + A_p f_y + A_c f_c + A_f f_f}
\]

where \(A_s\) is the section area of the steel pipe; \(f_y\) is the yield strength of the steel pipe; \(A_c\) is the section area of the concrete in the steel pipe; \(f_c\) is the compressive strength of the concrete in the steel pipe; \(A_p\) is the section area of the vertical steel board; \(f_p\) is the yield strength of the vertical steel board; and \(A_f\) and \(f_f\) are the section area and comprehensive strength of the concrete in the vertical steel board.

Fig. 13 SI curves of the specimens

Fig. 14 Strain distribution curves of the mid-span cross-section at different stages of specimens

(c) Location of strain gauges
4. Finite element analysis

4.1. Finite element model

To further study the performance of these LCFST-D columns, we established a model using the finite element software ANSYS. In this model, we used SOLID95 elements to establish the steel pipes, vertical connection plates, and cover plates at both ends, whereas SOLID65 elements were used for the concrete in the monocolumns. Fig. 15 shows the meshing of the model.

![Fig. 15 Assembly and boundary conditions of the analytical model](image)

Fig. 15 Assembly and boundary conditions of the analytical model

In this study, the constitutive curve of the steel tube was obtained by the KINH model [36–38] (Fig. 16). The concrete Poisson’s ratio was assumed to be 0.2, while \(\varepsilon_c=1.8\varepsilon_{\text{eq}}/E \) and \(\varepsilon_c=0.0038 \), where \(E \) and \(\varepsilon_0 \) are the elastic modulus and axial compressive strength of the concrete, respectively. The Hognestad constitutive law was adopted for the concrete (Fig. 17).

The boundary conditions of the specimen in the model were consistent with that in the test. The displacement of the column bottom in the X, Y, and Z directions was constrained; the rotation around the Y axis was also restrained. The displacement at the column top was restrained in the X and Z directions. To form a rigid surface, we created a coupling point at the loading point on the column top. Initial defects were considered in the model. The contact element was used to simulate the contact between the steel plate and concrete, and the friction coefficient was 0.4.

4.2. Failure mode and deformation analysis

The finite element analysis found an identical failure mode to that in the experiments, as shown in Fig. 18. Thus, the actual failure can be simulated by finite element analysis (i.e., the accuracy and correctness of the finite element model have been confirmed); hence, the model could be used for the finite element analysis of LCFST-D columns.

![Fig. 18 Final failure mode of a typical specimen](image)

Fig. 18 Final failure mode of a typical specimen

![Fig. 16 Stress-strain curve of the concrete](image)

![Fig. 17 Stress-strain curve of the steel](image)

![Fig. 19 Contours of von Mises stress for the specimens under the yield and peak loads](image)

Fig. 19 Contours of von Mises stress for the specimens under the yield and peak loads

4.3. Comparison of the bearing capacity

Fig. 20 shows the curves of the load displacement in the experiment and finite element model. This model could produce the experimentally observed load-displacement curves with good accuracy. The errors between the experimental results and imitations results were less than 5%. The peak load error was 1.4–4.6%. The total error of \(N_{\text{u}} \) was 3.1%. The initial rigidity obtained from the finite element analysis was slightly higher than the experimental results because of the initial flaw of the specimen and unevenness of the material.

![Fig. 20 Comparison of the load-longitudinal displacement curves of the specimen](image)
4.4. Parametric studies

A parametric analysis of the thicknesses of the vertical steel plate and steel pipe was conducted using the validated finite element model. With D=0 as a typical specimen, the material model, unit type, interface simulation, and boundary conditions were identical to those in the validated finite element model. In total, 34 specimens were set in the parametric study. The effect of the eccentricity on the carrying capacity was examined by changing the thicknesses of the steel pipe and vertical steel plate. The axial carrying capacity (N_a) and bending momentum (M_a) in the middle section of the specimens were calculated to generate N-M curves with eccentricity. To determine the conservation by using LCFST-D columns, the N-M curves were obtained by normalizing the axial force and bending moment with the respective flexural and axial resistances (N_a and M_a) from the model, as shown in Fig. 21 (b) and Fig. 22 (b).

The effects of the thickness of the vertical steel plate on the LCFST-D columns are shown in Fig. 21. The carrying capacity decreased by 15.9% when the thickness of the vertical steel plate decreased from 5.75 mm to 4 mm because the narrow vertical steel plate decreased the moment of inertia of the components around the weak axis and increased the overall instability of the specimens. Additionally, the risks of partial buckling at the vertical steel plate increased, which decreased the bending moment and axial load. Thin vertical steel plates in the specimen design ultimately weakened the bending resistance.

The effects of the thickness of the steel pipe on the LCFST-D columns are shown in Fig. 22. As the thickness of the steel pipe decreased from 5.75 mm to 4 mm, the carrying capacity decreased by 19%. With the decrease in thickness of the steel pipe, partial buckling is likely to develop. The monocolumn is the first component in these columns that bears the load. The decrease in steel pipe thickness weakens the constraint of the inner concrete and makes monocolumns more likely to develop local buckling or instability. Therefore, the thickness of the steel pipe significantly affects the carrying capacity.

5. Discussion of the eccentric bearing capacity of the LCFST-D columns

5.1. Calculating the eccentric bearing capacity of the LCFST-D columns

This study proposes a formula to predict the eccentric carrying capacity of LCFST-D columns. The basic assumptions are as follows:

a. The concrete and steel pipe undergo coordinated deformation.

b. The strain of the cross-section maintains a linear distribution along the section height (i.e., the plane section assumption).

c. The steels adopt the entire section plastic yield assumption, and the steel yield strength is f_y.

d. Without considering the tensile contribution of the concrete, the force analysis adopts the limit equilibrium theory.

e. The strength of concrete in the compression zone is f_c of the standard value of the prism compressive strength.

Given the above assumptions, the failure phenomenon of this type of specimen is bending instability failure through eccentric compression. When the pressure point is on the Y'Y' axis, the bending deformation direction of the LCFST-D column rotates around the X'X' axis. As shown in Fig. 23, the calculation of the cross-section compression-bending capacity is divided into three cases:

1. Calculation of ultimate bearing capacity in pure bending

 Force balance:
 \[
 \sum N = 0, \quad \sum A_y f_y - \sum A_y f_y = 0
 \]

 According to Eq. (4), The coordinates of the neutral axis can be solved.

2. Calculation of the stable bearing capacity of the LCFST-D columns

 The L-shaped column is a uniaxially symmetrical member, and its unidirectional bending failure may cause two types of failure: torsional failure and bending failure. In this experiment, the bias point of the LCFST-D column is on the Y'Y' axis, and its failure phenomenon is bending failure. The failure type of the specimen is bending instability failure around the weak axis (X'X' axis). This paper proposes formulas to calculate the stable carrying capacity (Eqs. (6)-(10)) with bending buckling instability failure.
where N is the design value of the axial compressive force in the range of the calculated component section; M is the design value of the bending moment; μ_1 is the concrete work bearing coefficient; M_0 is the design value of the bending capacity of the net section when only the bending moment M acts, which is calculated using formula (5); N_0 is the Euler critical force; β is the equivalent bending moment coefficient, which is generally 1; and φ_1 is the stability coefficient around the X’X’ axis, which is calculated by a formula in the literature [39–40].

The average value of N/N_0 was 0.973, the average error was less than 5%, and the standard deviation was 0.0062. The calculated values were lower than but consistent with the test values. Therefore, the calculated value obtained using this calculation method was more conservative than the actual bearing capacity. Fig. 25 shows a comparison of the predicted N and N_{STM}, where N_{STM} was obtained from the finite element simulations. The average value of N/N_{STM} is 0.947, the error was less than 10%, and the standard deviation was 0.0492. The analysis found that the value calculated by this formula has small errors with N_{STM} and N_0, which indicates that the calculation method can accurately predict the eccentric carrying capacity.

6. Summary and conclusion

According to the eccentric compression experiments and analysis of these LCFS-D columns, we draw the following conclusions:

1. The LCFS-D columns had high ductility and bearing capacity under eccentric loading. The bearing capacity gradually decreased with increasing eccentricity, whereas the ductility slightly increased. The plastic deformation capacity of the section was high, and the three monococonus shared loads well.

2. With identical eccentricity and other conditions, these LCFS-D columns had a notably higher carrying capacity than the LCFS columns. The carrying capacity of D-0 was 21.3% higher than that of E-0, the carrying capacity of D-40 was 60% higher than that of E-40, and the carrying capacity of D-80 was 65.5% higher than that of E-80. Compared to the single steel plate, the concrete in the double vertical steel plates effectively enhanced the monococonus coordination and internal force transmission, prevented the primitive buckling of the vertical steel plates, and better utilized the material properties.

3. Eccentric compression was simulated by ANSYS. The emulation results were consistent with the experimental results. Under eccentric loads, the three monococonus first carried the load. The stress at the vertical steel plate gradually increased with increasing load, and the middle total cross-section yielded at the peak load, which indicates that the plasticity of the materials could be completely utilized. The N-M curves of the LCFS-D columns were obtained through a parametric analysis of the thickness of the steel pipe and vertical steel plate, which can be used for the validated finite element model. The thickness of the steel pipe was the major influencing factor. The flexural capacity could be increased during structural design by increasing the thickness of steel pipes.

4. When the eccentricity direction was the axis of symmetry of the LCFS-D column, its failure type was bending instability failure around the weak axis (X’X’ axis). Thus, this paper proposed a simplified calculation formula to predict the compression and bending carrying capacity. The calculation results were consistent with the test values, and the error was less than 10%, which can provide a reference for engineering design.

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (52008270), the Youth Program of the Natural Science Foundation of Hebei Province, China (grant Nos. E2019210094 and E2020210003), and the Youth Project of the Science and Technology Research Foundation of Hebei Colleges and Universities, China (grant Nos. QN2018284 and QN202049).

References

Steel Structures, 15, 4, 797-807, 2015.

