Advanced Steel Construction

Vol. 7, No. 3, pp. 274-301 (2011)


SEMI-RIGID ELASTO-PLASTIC POST BUCKLING ANALYSIS OF A SPACE FRAME WITH FINITE ROTATION

 

K.S. Lee 1 and S.E. Han 2,*

1 Research Assistant Professor, Department of Architectural Engineering,

Inha University, 253 Yonghyundong, Nam-gu, Incheon, 402-751, South Korea

2 Professor, Department of Architectural Engineering,

Inha University, 253 Yonghyundong, Nam-gu, Incheon, 402-751, South Korea

*(Corresponding author: E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Received: 4 December 2010; Revised: 17 January 2011; Accepted: 24 January 2011

 

DOI:10.18057/IJASC.2011.7.3.5

 

View Article   Export Citation: Plain Text | RIS | Endnote

ABSTRACT

In this study, large-deformation and small-strain elasto-plastic analysis of space frames with symmetric cross sections and semi-rigid connections are presented. The effect of axial forces on the bending moment and lateral buckling are included. However, axial-torsional and warping effects are omitted. The Eulerian equations for a beam-column with finite rotation taking into account bowing effects are adopted for an elastic system and are extended to an inelastic system with a plastic hinge concept. The derived tangent stiffness matrix is asymmetric due to the finite rotation. The joint connection elements were introduced for semi-rigidity using a static condensation technique. The arc-length method was applied to trace the post-buckling range of elastic and elasto-plastic problems with semi-rigid connections. Nonlinear buckling and elasto-plastic collapse analyses were carried out for the proposed space frame to demonstrate the potential of the developed method in terms of accuracy and efficiency.

 

KEYWORDS

Space frame, Large deformation, Beam-column, Plastic hinge, Semi-rigid


REFERENCES

[1]       Renton, J.D., “Stability of Space Frames by Computer Analysis”, J. Sruct. Div., ASCE, 1962, Vol. 88, No. 8, pp. 81-103.

[2]       Saafan, S.A., “Nonlinear Behavior of Structural Plane Frames”, J. Sruct. Div., ASCE, 1962, Vol. 89, No. 4, pp. 557-579.

[3]       Oran, C., “Tangent Stiffness in Space Frame”, J. Struc. Div., ASCE, 1973, Vol. 99, No. 6, pp. 987-1001.

[4]       Chen, W.F. and Lui, E.M., “Stability Design of Steel Frames”, CRC Press, 1991.

[5]       Chen, W.F., Goto, Y. and Liew, J.Y.R., “Stability Design of Semi-Rigid Frames”, John Willey & Sons, Inc, 1996.

[6]       Chen, W.F. and Kim, S.E., “LRFD Steel Design using Advanced Analysis”, CRC Press Boca Raton (FL), 1997.

[7]       Papadrakakis, M., “Post Buckling Analysis of Spatial Structures by Vector Iteration Methods”, Computers & Structures, 1981, Vol. 14, pp. 393-402.

[8]       Kassimali, A. and Abbasnia, R., “Large Deformation Analysis of Elastic Space Frames”, J. Struct. Eng., ASCE, 1991, Vol. 117, No. 7, pp. 2067-2087.

[9]       Kassimali, A., “Large Deflection Analysis of Elastic-plastic Frames”, J. Struct. Eng., ASCE, 1983, Vol. 109, No. 8, pp. 1869-1886.

[10]     Chandra, R., Krishna, P. and Trikha, D.N., “Elastic-plastic Analysis of Steel Space Structures”, J. Struct. Engng, ASCE, 1990, Vol. 26, No. 3, pp. 939-955.

[11]     Abbasnia, R. and Kassimali, A., “Large Deformation Elastic-plastic Analysis of Space Frames”, J. Construct. Steel Research, 1995, Vol. 35, pp. 275-290.

[12]     Spillers, W.R., “Geometric Stiffness Matrix for Space Frames”, Computers & Structures, 1990, Vol. 36, No. 1, pp. 29-37.

[13]     Spillers, W.R. and Shams, M.H., “Three-Dimensional Beam-Columns”, Computers & Structures, 1994, Vol. 52, No. 3, pp. 449-460.

[14]     Spillers, W.R. and Rashidi, S., “Member Stiffness for Three-Dimensional Beam-Columns”, J. Struct. Eng., ASCE, 1997, Vol. 127, No. 7, pp. 971-972.

[15]     Levy, R. and Spillers, W.R., “Analysis of Geometrically Nonlinear Structures, 2nd ed.”, Kluwer Academic Publishers, 2003.

[16]     Kim, S.E., Kim, Y. and Choi, S.H., “Nonlinear Analysis of 3-D Steel Frames”, Thin Walled Struct, 2001, Vol. 39, pp.445-461.

[17]     Kim, S.E. and Choi, S.H., “Practical Advanced Analysis for Semi-rigid Space Frames”, Internat. J. Solids Structures, 2001, Vol. 38, No.50-51, pp. 9111-9131.

[17]     Kim, S.E., Park, M.H. and Choi, S.H., “Direct Design of Three-dimensional Frames using Practical Advanced Analysis”, Engineering Structures, 2001, Vol. 23, No. 11, pp. 1491-1502.

[18]     Gallagher, R.H. and Padlog, J., “Discrete Element Approach to Structural Instability Analysis”, AAIA J., 1963, Vol. 1, 1437–1439.

[19]     Przemieniecki, J.S., “Theory of Matrix Structural Analysis”, New York, McGraw-Hill, 1968.

[20]     Jennings, A., “Frame Analysis including Change in Geometry”, J. Struct. Div, ASCE, 1968, Vol. 94, pp. 627–44.

[21]     Porter, F.L. and Powell, G.H., “Static and Dynamic Analysis of Inelastic Framed Structures”, Report No. EERC 71-3. Earthquake Engineering Research Centre, University of California at Berkeley, CA, 1971.

[22]     Chen, P.F. and Powell, G.H., “Generalized Plastic Hinge Concepts for 3D Beam-column Elements”, Report No. EERC 82-20. Earthquake Engineering Research Centre, University of California at Berkeley, CA, 1982.

[23]      Powell, G.H. and Chen, P.F., “3-D Beam-column Element with Generalized Plastic Hinges”, J. Engng. Mech. ASCE, 1986, Vol. 112, No. 7, pp. 627-641.

[24]     Gattass, M. and Abel, J.F., “Equilibrium Considerations of the Updated Lagrangian Formulation of Beam–columns with Natural Concepts”, Int. J. Numer. Meth. Engng., 1987, Vol. 24, pp. 2119-2141.

[25]     Makowski, Z.S., “Regular Lattice Plates and Shells”, Elsevier, 1990. [26] White, D.W. and Hajjar, J., “Application of Second-order Elastic Analysis in LRFD: Research to Practice”, Engng. J, AISC, 1991, Vol. 28, pp. 133–148.

[27]     Yang, Y.B. and Leu, L.J., “Non-linear Stiffnesses in Analysis of Planar Frames”, Comput. Methods Appl. Mech. Engrg. 1994, Vol. 117, pp. 233–247.

[28]     Yang, Y.B. and Kuo, S.R., “Theory & Analysis of Nonlinear Frames”, Prentice-Hall, 1994.

[29]     McGuire, W., Gallagher, R.H. and Ziemian, R., “Matrix Structural Analysis, 2nd Ed.” New York, John Wiley and Sons, 2000.

[30]     Argyris, J., “An excursion into Large Rotations”, Comput. Methods Appl. Mech. Engrg., 1982, Vol. 32, pp. 85–155.

[31]     Argyris, J.H., Dunne, P.C. and Scharpf, D.W., “On Large Displacement Small Strain Analysis of Structures with Rotational Degrees of Freedom”, Comput. Methods Appl. Mech. Engrg., 1978, Vol. 14, pp. 401-451.

[32]     Argyris, J.H., Balmer, H., Doltsinis, I.S.T., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis G.A., Mlejnek, H.P., Muller, M. and Scharpf, D.W., “Finite Element Method-The Natural Approach”, Comput. Methods Appl. Mech. Engrg., 1979, Vol. 17/18, pp. 1-106.

[33]     Argyris, J.H., Hilpert, O., Malejannakis, G.A. and Scharpf, D.W., “On the Geometrical Stiffness of a Beam in Space—A Consistent v.w. approach”, Comput. Methods Appl. Mech. Engrg., 1979, Vol. 20, pp. 105-131.

[34]     Argyris, J.H., Boni, B., Hindenlang, U. and Kleiber, M., “Finite Element Analysis of Two and Three Dimensional Elasto-plasic Frames-The Natural Approach”, Comput. Methods Appl. Mech. Engrg., 1982, Vol. 35, pp. 221-248.

[35]     Wood, R.D. and Zienkiewicz, O.C., “Geometrically Non-linear Finite Element Analysis of Beam, Frames, Arches and Axisymmetric Shells”, Computers & Structures, 1977, Vol. 7, pp. 725-735.

[36]     Bathe, K.J. and Bolourchi, S., “Large Displacement Analysis of Three-dimensional Beam Structures”, Int. J. Num. Meth. Eng., 1979, Vol. 14, pp. 961-986.

[37]     Reissner, E., “On Finite Deformation of Space-curved Beams”, J. Appl. Math. Phys., 1981, Vol. 32, pp. 734–744.

[38]     Simo, J.C., “A Finite Strain Beam Formulation, Part I, The Three-dimensional Dynamic Problem”, Comput. Methods Appl. Mech. Engrg., 1985, Vol. 49, pp. 55–70.

[39]     Simo, J.C. and Vu-Quoc, L., “A Three-dimensional Finite-strain Rod Model, Part II, Computational Aspects”, Comput. Methods Appl. Mech. Engrg., 1986, Vol. 58, pp. 79–116.

[40]     Simo, J.C. and Vu-Quoc, L., “On the Dynamics in Space of Rods Undergoing Large Motions–A Geometrically Exact Approach”, Comput. Methods Appl. Mech. Engrg., 1988, Vol. 66, pp. 125–161.

[41]     Simo, J.C. and Vu-Quoc, L., “A Geometrically Exact Rod Model Incorporating Shear and Torsion-warping Deformation”, Int. J. Solids Struct., 1991, Vol. 27, pp. 371–393.

[42]     Simo, J.C., “The (Symmetric) Hessian for Geometrically Nonlinear Models in Solid Mechanics: Intrinsic Definition and Geometric Interpretation”, Comput. Methods Appl. Mech. Engrg., 1992, Vol. 96, pp. 189–200.

[43]     Cardona, A. and Geradin, M., “A Beam Finite Element Non-linear Theory with Finite Rotations”, International Journal for Numerical Methods in Engineering, 1988, Vol. 26, pp. 2403-2438.

[44]     Ibrahimbegovic, A., “Computational Aspects of Vector-like Parametrization of three-dimensional finite rotations”, Int. J. Num. Meth. Eng., 1995, Vol. 38, pp. 3653-3673.

[45]     Zupan, D. and Saje, M., “Finite-element Formulation of Geometrically Exact Three-dimensional Beam Theories based on Interpolation of Strain Measures”, Comput. Methods Appl. Mech. Engrg., 2003, Vol. 192, pp. 5209–5248.

[46]     Mata, P., Oller, S. and Barbat, A.H., “Static Analysis of Beam Structures under Nonlinear Geometric and Constitutive Behavior”, Comput. Methods Appl. Mech. Engrg., 2007, Vol. 196, pp. 4458–4478.

[47]     Meek, J.L. and Tan, H.S., “Geometrically Nonlinear Analysis of Space Frames by an Incremental Iterative Technique”, Comput. Methods Appl. Mech. Engrg., 1984, Vol. 47, pp. 261-282.

[48]     Chan, S.L., “Geometric and Material Nonlinear Analysis of Beam-Columns and Frames Using the Minimum Residual Displacement Method”, Int. J. Num. Meth. Eng., 1988, Vol. 26, No. 12, pp. 2657-2669.

[49]     Crisfield, M.A. and Cole, G., “Co-rotational Beam Elements for Two and Three-dimensional Nonlinear Analysis, Discretisation Methods in Structural Mechnics”, Ed. Kuhn, G. and Mang, H., Spring-Verlag, 1989, pp. 115-124.

[50]     Crisfield, M.A., “A Consistent Co-rotational Formulation for Nonlinear Three Dimensional Beam Elements”, Comput. Methods Appl. Mech. Engrg., 1990, Vol. 81, pp. 131-150.

[51]     Nour-Omid, B. and Rankin, C.C., “Finite Rotation Analysis and Consistent Linearization using Projectors”, Comput. Methods Appl. Mech. Eng., 1991, Vol. 93, pp. 353-384.

[52]     Teh, L.H. and Clarke, M.J., “Co-rotational and Lagrangian Formulations of Elastic Three-dimensional Beam Finite Elements”, J. Construct. Steel Research, 1998, Vol. 48, pp. 23–44. [53] Battini, J.M. and Pacoste, C., “Co-rotational Beam Elements with Warping Effects in Instability Problems”, Comput. Methods Appl. Mech. Engrg., 2002, Vol. 191, pp. 1755–1789.

[54]     Battini, J.M. and Pacoste, C., “Plastic Instability of Beam Structures using Co-rotational Elements”, Comput. Methods Appl. Mech. Engrg., 2002, Vol. 191, pp. 5811–5831.

[55]     Izzuddin, B.A. and Elnashai, A.S., “Eulerian Formulation for Large Displacement Analysis of Space Frames”, J. Eng. Mech., ASCE, 1993, Vol. 119, No. 3, pp. 549-569.

[56]     Kondoh, K. and Atluri, S.N., “Simplified Finite Element Method for Large Deformation, Post-Buckling Analysis of Large Frame Structures, Using Explicurly Derived Tangent Stiffness Matrices”, Int. J. Num. Meth. Eng., 1986, Vol. 3, No. 1, pp. 69-90.

[57]     Shi, G. and Atluri, S.N., “Elasto-plastic Large Deformation Analysis of Space-frames : A Plastic-hinge and Stress-based Explicit Derivation of Tangent Stiffness”, Int. J. Num. Meth. Eng., 1988, Vol. 26, pp. 589-615.

[58]     Nee, K.M. and Haldar, A., “Elastoplastic Nonlinear Post-Buckling Analysis of Partially Restrained Space Structures”, Comput. Methods Appl. Mech. Engrg., 1988, Vol. 71, pp. 69-97.

[59]     Downer, J.D., Park, K.C. and Chiou, J.C., ‘Dynamics of Flexible Beams for Multibody Systems: A Computational Procedure’, Comput. Methods Appl. Mech. Engrg., 1992, Vol. 96, pp. 373-408.

[60]     Park, M.S. and Lee, B.C., “Geometrically Non-linear and Elastoplastic Threedimensional Shear Flexible Beam Element of Von-Mises-type Hardening Material”, Int. J. Numer. Methods Engrg., 1996, Vol. 39, pp. 383–408.

[61]     Clarke, M.J. and Hancock, G.J., “Finite Element Nonlinear Analysis of Stressed-arch Frames”, J. Struct. Engng., ASCE, 1991, Vol. 117, No.28, pp. 19–37.

[62]     Attalla, M.R., Deierlein, G.G. and McGuire, W., “Spread of Plasticity: Quasi-plastic Hinge Approach”, J. Struct. Eng., ASCE, 1994, Vol. 120, No. 8, pp. 2451-2473.

[63]     Clarke, M.J. and Hancock, G.J., “A Study of Incremental-Iterative Strategies for Nonlinear Analysis” , Int. J. Numer. Methods Engrg., 1990, Vol. 29, pp. 1365-1391.

[64]     The, L.H. and Clarke, M.J., “Plastic-zone Analysis of 3D Steel Frames using Beam Elements”, J. Struct. Engng. 1999, Vol. 125, pp. 1328–1337.

[65]     Gruttmann, R., Sauer, R. and Wagner, W., “Theory and Numerics of Three-dimensional Beams with Elastoplastic Behaviour”, Int. J. Numer. Meth. Engrg., 2000, Vol. 48, pp. 1675–1702.

[66]     Jiang, X.M., Chen, H. and Liew, J.Y.R., “Spread-of-plasticity Analysis of Three-dimensional Steel Frames”, J. Construct. Steel Research, 2002, Vol. 58, No. 2, pp. 193-212.

[67]     Kato, S., Mutoh, I. and Shomura, M., “Collapse of Semi-rigidly Jointed Reticulated Domes with Initial Geometric Imperfections”, J. Construct. Steel Research, 1998, Vol. 48, pp. 145-168.

[68]     Kato, S., Kim, J.M. and Cheong, M., “A New Proportioning Method for Member Sections of Single Layer Reticulated Domes Subjected to Uniform and Nonuniform Loadings”, Engineering Structures, 2003, Vol. 25, pp. 1265–1278.

[69]     Liu, Y., Xu, L. and Griersonb, D.E., “Compound-element Modeling Accounting for Semi-rigid Connections and Member Plasticity”, Engineering Structures, 2008, Vol. 30, pp. 1292-1307.

[70]     Sekulovic, M., Nefovska-Danilovic, M., “Contribution to Transient Analysis of Inelastic Steel Frames with Semi-rigid Connections”, Engineering Structures, 2008, Vol. 30, pp. 976-989.

[71]     Chiorean, C.G., “A Computer Method for Nonlinear Inelastic Analysis of 3D Semi-rigid Steel Frameworks”, Engineering Structures, 2009, Vol. 31, No. 12, pp. 3016-3033.

[72]     Crisfield, M.S., “A Fast Incremental Iterative Solution Procedure that Handles 'Snap Through'”, Computers & Structures, 1981, Vol. 13, pp. 55-62.

[73]     Ramm, E., “Strategies for Tracing the Nonlinear Response Near Limit Points”, in : Wunderlich, W., Stein, E. and Bathe, K.J., Eds., Nonlinear Finite Element Analysis in Structural Mechanics. Springer, 1981, pp. 63-89.

[74]     Crisfield, M.A., “Nonlinear Finite Element Analysis of Solids and Structures”, Vol.1, Essentials, John Wiley & Sons, 1991.

[75]     Crisfield, M.A., “Nonlinear Finite Element Analysis of Solids and Structures”, Vol.2, Advanced Topics, John Wiley & Sons, 1997.

[76]     Chan, S.L. and Zhou, Z.H., “Pointwise Equilibrium Polynomial Element for Nonlinear Analysis of Frames”, J. Struct. Eng., ASCE, 1994, Vol. 120, pp. 1703–1717.

[77]     Izzuddin, B.A., “Quartic Formulation for Elastic Beam-columns subject to Thermal Effects”, J. Eng. Mech., ASCE, 1996, Vol. 122, pp. 861–71.

[78]     Chan, S.L. and Zhou, Z.H., “Nonlinear Integrated Design and Analysis of Skeletal Structures by 1 Element per Member”, Engineering Structures, 2000, Vol. 22, pp. 246–57.

[79]     Liew, J.Y.R., Chen, H., Shanmugam, N.E. and Chen, W.F., “Improved Nonlinear Plastic Hinge Analysis of Space Frame Structures”, Engineering Structures, 2000, Vol. 22, pp. 1324-1338.

[80]     Hasegawa, A., Liyanage, K.K. and Nishino, F., “Non-iterative Nonlinear Analysis Scheme of Frames with Thin-walled Elastic Members”, Structural Engrg./Earthquake Engrg., 1987, Vol. 4, pp. 45-55.

[81]     Hodge, D.G., “Plastic Analysis of Structures”, McGraw -Hill, New York, 1959. [82] Ueda, Y., Yao, T., “The Plastic Node Method : A New Method of Plastic Analysis”, Comput. Methods Appl. Mech. Engrg., 1982, Vol. 34, pp. 1089-1104.

[83]     Papadrakakis, M. and Ghionis, P., “Conjugate Gradient Algorithms in Nonlinear Structural Analysis problems”, Comput. Methods Appl. Mech. Engrg., 1986, Vol. 59, No. 1, pp. 11-27.

[84]     Hart, J.D. and Wilson, E.L., “Simplified Earthquake Analysis of Buildings Including Site Effects”, Report No.UCB/SEMM-89/23, Department of Civil Engineering, University of California, Berkeley, December, 1989.