Advanced Steel Construction

Vol. 5, No. 1, pp. 14--32 (2009)


FATIGUE EXPERIMENTS ON VERY HIGH STRENGTH STEEL BASE MATERIAL AND TRANSVERSE BUTT WELDS

 

R.J.M. Pijpers 1,*, M.H. Kolstein 2, A. Romeijn 3 and F.S.K. Bijlaard 4

1 PhD researcher, Faculty of CiTG, TU Delft, Delft, The Netherlands;

Materials Innovation Institute, Delft, The Netherlands

*(Corresponding author: E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

2 Senior Researcher, Faculty of CiTG, TU Delft, Delft, The Netherlands

3 Associate Professor, Faculty of CiTG, Delft University of Technology, Delft, The Netherlands

4 Professor, Faculty of CiTG, TU Delft, Delft, The Netherlands

Received: 2 November 2007; Revised: 17 December 2007; Accepted: 24 December 2007

 

DOI:10.18057/IJASC.2009.5.1.2

 

View Article   Export Citation:Plain Text | RIS | Endnote

ABSTRACT

  Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years. However, the use of these steels in the civil engineering industry is still uncommon, due to lack of design and fabrication knowledge and therefore limited inclusion in codes. Moreover, in a fatigue loaded VHSS structure absolute and relative stress variation will be higher compared to stresses in structures made of lower grade steels. According to current design codes the fatigue strength of welded connections mainly depends on the applied detail, plate thickness and machining condition, not on steel grade. Recently experiments on plates made ofS690 and S1100, with and without transverse butt welds, have been performed in order to study the fatigue strength. Test results show that the characteristic fatigue strengths of plates with and without transverse butt weld lay well above the values according to EN 1993-1 -9, mainly because of higher slope of the S-N curves. Crack initiation phase of S1100 specimens is relatively long compared to S690 specimens, while crack propagation is relatively short. An efficient application of VHSS in welded connections requires high fabrication quality and avoidance of large stress concentration in joints.

 

KEYWORDS

Very High Strength Steel; High Cycle Fatigue; Transverse Butt Welds; Eurocode.


REFERENCES

[1]      Schröter, F., “Höherfeste Stähle für den Stahlbau – Auswahl und Anwendung”, Bauingenieur, 2003, Vol. 9, pp. 426-432.

[2]       prEN 1993-1-12, “Design of Steel Structures - General - Part 1.12 : Additional Rules for the Extension of EN 1993 up to Steel Grades S700”, European Committee for Standardization, 2004.

[3]       NPR-CEN/TS 13001-3-1, “Cranes – General design – Part 3.1: Limit States and Proof of Competence of Steel Structures”, European Committee for Standardization, 2004.

[4]       Pijpers, R.J.M., Kolstein, M.H., Romeijn, A. and Bijlaard, F.S.K., “The Fatigue Strength of Butt Welds Made of S690 and S1100”, Proceedings of the 3rd International Conference on Steel and Composite Structures, Manchester, 2007, pp. 901-907.

[5]       Pijpers, R.J.M., Kolstein, M.H., Romeijn, A. and Bijlaard, F.S.K., “The Fatigue Strength of Base Material and Butt Welds Made of S690 and S1100”, Proceedings of the 5th International Conference on Advances in Steel Structures, Singapore, 2007, Vol. III, pp. 603-608.

[6]       Günther, H.P. and Kuhlmann, U., “Use and Application of High Performance Steels for Steel Structures”, IABSE Structural Engineering Documents 8, 2005.

[7]       Herion, S. and Müller, C., “Untersuchung Kranspezifischer Kerbdetails”, Stahlbau, 2000, Vol. 4, No. 69, pp. 251-267.

[8]       Puthli, R., Herion, S. and Bergers, J., “Untersuchungen zum Ermüdungsverhalten von hochfesten Stählen im Rahmen von LIFTHIGH”, Stahlbau, 2006, Vol. 11, No. 75, pp. 916-924.

[9]       Bergers, J., Herion, S., Höhler, S., Müller, C. and Stötzel, J., “Beurteilung des Ermüdungsverhaltens von Krankonstruktionen bei Einsatz hoch- und ultrahochfester Stähle”, Stahlbau, 2006, Vol. 11, No. 75, pp. 897-915.

[10]    Hamme, U, J. Hauser, A. Kern and Schriever, U., “Einsatz hochfester Baustähle im Mobilkranbau”, 2000.

[11]    Kuhlmann, U., Dürr, A. and Günther, H.P., “Verbesserung der Ermüdungsfestigkeit höherfester Baustähle durch Anwendung der UIT-Nachbehandlung”, Stahlbau, 2006, Vol. 11, No. 75, pp. 930-938.

[12]    EN 1993-1-9, “Design of steel structures - General - Part 1.9: Fatigue Strength of Steel Structures”, European Committee for Standardization, 2005.

[13]    prEN 1090-2, “Execution of Steel Structures and Aluminium Structures - Part 2: Technical Requirements for the Execution of Steel Structures”, European Committee for Standardization, 2005.

[14]    Demofonti, G., Riscuifuli, S., Sonsino, C.M., Kaufmann, H., Sedlacek, G., Müller, C., Hanus, F. and Wegmann, H.G., “High-strength Steels in Welded State for Lightweight Constructions under High and Variable Stress Peaks”, Final Report EUR 19989, Luxembourg, 2001.

[16]    Gurney, T.R., “Fatigue of Welded Structures”, UK, 1979.

[17]    Maddox, S.J., “Fatigue Strength of Welded Structures”, Abington Publishing, 1991

[18]    Radaj, D., “Design and Analysis of Fatigue Resistant Welded Structures”, Abington Publishing, 1990.

[19]    Hübner, P., “Schwingfestigkeit der hochfesten schweissbaren Baustähle StE 885 und StE 960”, Technischen Universität Bergakademie Freiberg, Germany, 1996.

[20]    Wellinger, K. and Dietmann, H., “Festigkeitsberechnung”, Alfred Körner Verlag, Stuttgart, 1976.

[21]    Hobbacher, A., “Recommendations for Fatigue Design of Welded Joints and Components”, IIW document XIII-1965-03 / XV-1127-03, 2004.

[22] EN-ISO 5817, Welding - Fusion-welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded) - Quality Levels for Imperfections, ISO Copyright Office, Switzerland, 2003.