Advanced Steel Construction

Vol. 1, No. 2, pp. 65-86 (2005)



A. Agüero and F. Pallares

Universidad Politecnica de Valencia, Campus Vera s/n, 46020 Valencia, España

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.




View Article   Export Citation: Plain Text | RIS | Endnote


The aim of this paper is to present a practical advanced analysis method for steel frame design, based on asimplified second-order elastic analysis of the structure with an equivalent geometric imperfection. The second order effects are calculated using the orthogonality properties of the buckling modes. The geometric imperfection is obtained from the buckling mode by a suitable scaling procedure using a generalization of Dutheil´s method.



Advanced analysis, Geometric nonlinearity, Steel design, Steel frames, Geometric imperfection.


[1] ENV 1993-1-1, “Eurocode 3: Design of steel structures, Part 1.1: general rules and rules for buildings”, CEN, 1992.

[2] Chen, W.F. and Atsuta, T., “Theory of beam columns Vol. 2: Space behaviour and design”. Mc Graw Hill, U.S.A., 1976.

[3] Chan, S.L. and Zhou, Z.H., “Second order analysis of frame using a single imperfect element per member”, Journal of Structural Engineering, ASCE, 1995, 121(6), pp.939-945.

[4] Kim, S.E. and Chen, W.F., “Design guide for steel frames using advanced analysis program”, Engineering Structures, 1999, 21, pp.352–364.

[5] Clarke, M.J., Bridge, R.Q., Hancock, G.J. and Trahair, N.S., “Advanced analysis of steel building frames”, Journal of Constructional Steel Research, 1992, 23, pp.1-29.

[6] RPM-95, “Recomendaciones para el proyecto de puentes metálicos para carreteras”. Ed. Ministerio de fomento, 1996.

[7] Aguero, A., “Metodo aproximado para estimar el estado limite ultimo en entramados metalicos esbeltos”, Tesis Doctoral, Valencia, Spain. Ed. By Proquest, 2003.

[8] Crisfield, M.A., “Non-linear finite element analysis of solids and structures”, volume 2, John Wiley and Sons, 1997.

[9] Culver, C.G., “Initial imperfections in Biaxial Bending Equations”, Journal of the structural Division, ASCE, 1966, 92(ST2), Proc. Paper 4772, April, pp.63-83.

[10] Timoshenko, S.P. and Gere, J.M., “Theory of elastic stability”, McGraw Hill, New York, 1961.

[11] Trahair, N.S., “Flexural-torsional buckling of structures”, E&FN SPON, 1993

[12] Zienkiewicz, O.C. and Taylor, R., “The finite element method Solid Mechanics”, Volume II, Butterworth-Heinemann, 2000.