Advanced Steel Construction

Vol. 16, No. 3, pp. 279-286 (2020)




Lucas Alves Escanio, Guilherme Cássio Elias,Luiz Henrique de Almeida Neiva,

Vinícius Nicchio Alves and Arlene Maria Cunha Sarmanho *

Civil Engineering Department, Federal University of Ouro Preto, Ouro Preto, Brazil

*(Corresponding author: E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Received: 3 October 2019; Revised: 22 June 2020; Accepted: 22 June 2020




View Article   Export Citation: Plain Text | RIS | Endnote


This study presents an experimental and numerical research into the behavior of beam-to-upright end connections, which are part of steel storage systems. A total of 21 cantilever tests comprising three upright and four beam cross sections, were conducted, and a finite element numerical model was developed. The model was developed to compare its results with experimental results and to extrapolate these results in a parametric analysis. The aim of the study is to evaluate the behavior, semi-rigidity, and influence of the geometric parameters in the stiffness of beam–upright lipped connections of pallet-type industrial storage systems. The results of the numerical model showed good correlation with the experimental results, in terms of moment–rotation behavior and the initial stiffness values, with a maximum difference of 10%. In the parametric analysis, a pattern was observed in the variation of stiffness when the dimensions—mainly the height of beams—of the prototypes were increased.



Cold-formed steel, Storage rack uprights, Cantilever test, Semi-rigid connection, Beam-to-upright lipped connection


[1] Prabha P, Marimuthu V, Saravanan M, Arul Jayachandran S. Evaluation of connection flexibility in cold formed steel racks. J Constr Steel Res 2010;66:863–72. doi:10.1016/j.jcsr.2010.01.019.

[2] Shah SNR, Sulong NHR, Jumaat MZ, Shariati M. State-of-the-art review on the design and performance of steel pallet rack connections. Eng Fail Anal 2016;66:240–58. doi:10.1016/j.engfailanal.2016.04.017.

[3] Neiva LH de A, Sarmanho AMC, Faria VO, Souza FT de, Starlino JAB. Numerical and experimental analysis of perforated rack members under compression. Thin-Walled Struct 2018;130:176–93. doi:10.1016/j.tws.2018.05.024.

[4] Casafont M, Magdalena Pastor M, Roure F, Peköz T. An experimental investigation of distortional buckling of steel storage rack columns. Thin-Walled Struct 2011;49:933–46. doi:10.1016/j.tws.2011.03.016.

[5] Elias GC, Neiva LH de A, Sarmanho AMC, Alves VN, Castro AFB. Ultimate load of steel storage systems uprights. Eng Struct 2018;170:53–62. doi:10.1016/j.engstruct.2018.05.078.

[6] Bajoria KM, Talikoti RS. Determination of flexibility of beam-to-column connectors used in thin walled cold-formed steel pallet racking systems. Thin-Walled Struct 2006;44:372–80. doi:10.1016/j.tws.2006.01.007.

[7] Sena Cardoso F, Rasmussen KJR. Finite element (FE) modelling of storage rack frames. J Constr Steel Res 2016;126:1–14. doi:10.1016/j.jcsr.2016.06.015.

[8] Bajoria KM, Sangle KK, Talicotti RS. Modal analysis of cold-formed pallet rack structures with semi-rigid connections. J Constr Steel Res 2010;66:428–41. doi:10.1016/j.jcsr.2009.10.005.

[9] Markazi FD, Beale RG, Godley MHR. Experimental analysis of semi-rigid boltless connectors. Thin-Walled Struct 1997;28:57–87. doi:10.1016/s0263-8231(97)00003-7.

[10] Zhao X, Wang T, Chen Y, Sivakumaran KS. Flexural behavior of steel storage rack beam-to-upright connections. J Constr Steel Res 2014;99:161–75. doi:10.1016/j.jcsr.2014.04.007.

[11] Aguirre C. Seismic behavior of rack structures. J Constr Steel Res 2005;61:607–24. doi:10.1016/j.jcsr.2004.10.001.

[12] Escanio LA. Análise numérica de ligações em sistemas de armazenagem industrial. Master Dissertation, Ouro Preto: 2019.

[13] Freitas AMS, Freitas MSR, Souza FT. Analysis of steel storage rack columns. J Constr Steel Res 2005;61:1135–46. doi:10.1016/j.jcsr.2005.02.004.

[14] Freitas AMS, Freitas MSR, Souza FT, Silva GG, Faria VO. Theoretical and experimental analysis of perforated rack columns. Rev Esc Minas 2013;66:289–94. doi:10.1590/S0370-44672013000300004.

[15] Gusella F, Arwade SR, Orlando M, Peterman KD. Influence of mechanical and geometric uncertainty on rack connection structural response. J Constr Steel Res 2019;153:343–55. doi:10.1016/j.jcsr.2018.10.021.

[16] ANSYS Inc. ANSYS. ANSYS, Inc 2014.

[17] EN 15512. Steel static storage system —Adjustable pallet racking systems – Principles for structural design 2009.

[18] ABNT NBR ISO 6892:2002. Materiais metálicos - Ensaio de tração à temperatura ambiente. Assoc Bras Normas Técnicas 2002. doi:7704010.

[19] ANSI MH16.1. Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks 2012.

[20] Salmon, Charles; Johnson J. STEEL STRUCTURES: Design an Behavior. Emphasizing load and resistance factor design. 5th ed. 2008.

[21] Freitas AMS, Souza FT, Freitas MSR. Analysis and behavior of steel storage drive-in racks. Thin-Walled Struct 2010;48:110–7. doi:10.1016/j.tws.2009.09.003.