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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

In order to achieve the wind-induced vibration response analysis and fatigue analysis, this study conducts the wind field 

simulations around tubular tower and rotating blades of typical pitch-controlled 1.25MW wind turbine structures, respec-

tively. Based on field test data, there is a large difference between the turbulent wind spectrum for the rotating blades 

and classic wind spectrum adopted by the non-rotating blades and tubular tower. In this study, first, the auto and cross-

rotational Fourier spectrums are deduced based on the physical mechanism, with particular focus on the influences of the 

rotational effect and the correlation between different points located on the same and different blades. Then, the Daven-

port type coherence function is optimized. The high accuracy of the rotational Fourier spectrum model is verified by 

comparing with the real data. Relevant parameter analysis of the rotational Fourier spectrum is conducted. Finally, tur-

bulent wind fields around the tubular tower based on the Kaimal spectrum and the rotating blades based on the rotational 

Fourier spectrum are simulated by means of the harmony superposition method. The results indicate that the calculated 

wind spectrums have good agreement with the target wind spectrums. Therefore, the proposed approach in this study is 

feasible for the turbulent wind field simulation of wind turbine structures. 
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1.  Introduction 

 

As more and more public concern and awareness about energy and 

environmental issues has increased, wind power, which is a renewable source 

of energy, has gained prominence and has been extensively developed [1,2]. In 

recent years, large-scale wind turbine structures have been widely used around 

the world, with the characteristics of large moment of inertia, broad range of 

working wind speed and high-rise towers [3,4]. It is worth noting that cyclic 

loadings, which are exerted on the rotating blades, and fluctuating wind load 

can inevitably bring about fatigue failure of the wind turbine tubular tower [5]. 

In general, the fatigue issue of tubular towers is not only related to the fatigue 

strength, but also dependent on the load effect (see Figure 1). While continuous 

progress has been made looking into the fatigue strength of the various 

materials, relevant investigations on the load effect induced by the cyclic 

loading of rotating blades and fluctuating wind load are generally insufficient. 

Therefore, in order to guarantee the fatigue reliability of the wind turbine tubular 

towers, it is essential to analyze wind-induced dynamic responses. To achieve 

this purpose, wind field simulations around the wind turbine structure are 

necessary, especially for the fluctuating component. 

It is worth mentioning that due to the rotational effect of blades, the 

turbulent wind field model of wind turbine structures is quite different from that 

of the ordinary wind-sensitive structures such as high-rise buildings and bridges 

[6]. Field tests confirmed that compared with the turbulent wind spectrum of the 

non-rotating blades, energy distribution of turbulent wind from rotating blades 

produces fundamental change, especially in high frequency components [7]. 

Moreover, wind-induced fatigue loads obtained through considering rotational 

effect of blades are obviously greater than the corresponding values caused by 

the non-rotating state, which could lead to unsafe fatigue life prediction [8]. 

Therefore, rotational effect of blades should be considered to accurately obtain 

the aerodynamic loads and carry out the wind-induced fatigue analysis of wind 

turbine structures. However, many researchers still adopt the classical turbulent 

wind spectrum models [3,9], such as the Von Karman and the Kaimal wind 

spectrums, to simulate the wind field around the blades, and relevant studies on 

rotational spectrum models of blades are still insufficient. Therefore, it is 

necessary to take an in-depth look into the theoretical rotational sampled wind 

spectrum to consider the impact of the blade rotational effect on turbulent wind 

field of wind turbine structures. 

 

Fig.1 Fatigue calculation diagram 

 

At present, there are two fundamental rotationally sampled wind spectrum 

models, namely, the Pacific Northwest Laboratory (PNL) model [5,8,10-13] and 

the Sandia National Laboratory (SNL) model [14,15]. With regard to the PNL 

model, Connell [7] found that there are significant differences between turbulent 

wind spectrum for the rotating blades and wind spectrum for the non-rotating 

blades, and that the energy redistribution is obvious. In order to describe the 

wind speed of rotating blades at a theoretic level, Connell [10] established a 

mathematical model of the rotational sampled wind spectrum in a rotating 

coordinate system. Powell [11] compared the theoretical model results to the 

measured data to validate the correctness of PNL model. Parameter analysis 

results show that turbulent wind speed variance and turbulent integral scales in 

longitudinal and lateral directions are important input parameters. Based on the 

PNL model, Powell and Connell [12] simulated the wind field of wind turbine 

structures and obtained the fluctuating wind speed taking the rotating effect of 

blades into account. However, only auto-spectrum was applied in the wind field 

simulation without considering correlation between the different fluctuating 

wind speeds. Based on the research findings proposed by Connell [10], Burton 

et al. [16] deduced the rotational cross-spectrum model that considered the 

correlation of different points located in the same blade. However, the 

correlation between the different points located on the different blades was not 

considered in the model. It is worth mentioning that the rotationally sampled 

spectrum of PNL model, which is an analytical formula, is generated through 

Fourier transformation of an autocorrelation function taken from Von Karman 
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spectrum (one type of origin spectrum). For origin spectrum, this requirement, 

which influences further popularization and application, is extremely strict.  

Veers [14] adopted a rotational sampling method to develop another 

theoretically rotational spectrum model, namely, the SNL model. Phase lag 

terms were introduced to consider the rotational effect of blades. Veers [15] 

presented that through improving two kinds of variables, the differences 

between calculated results and measured results can be controlled because of 

open origin spectrum and coherence function. Kelley [17] successfully extended 

the velocity components of the SNL model from the longitudinal direction to 

three dimensions. However, the SNL model has the limitations of time-

consuming, dissatisfying with Navier-Stokes equation, and artificially defining 

the coherence function [14,15]. 

He [18] put forward a rotational Fourier spectrum of wind turbine structures 

based on the physical mechanism, however, the derivation process was 

relatively complex and no comparison with the measured results was conducted.  

Therefore, it is essential to establish a theoretically rotational wind 

spectrum model in this study, which has the advantages of a simple derivation 

process, clear physical mechanism, open origin function and reliable simulated 

results, to simulate the wind field of wind turbine structures. 

In order to conduct the wind-induced response analysis in time domain, 

numerical simulation algorithm of wind field based on Monte-Carlo theory 

should be developed. At present, the main methods adopted in the fluctuating 

wind speed simulation are Linear Filter Method [19], Harmony Superposition 

Method [20], and Wavelet Analysis Method [21]. Based on the linear filtering 

technique, Linear Filter Method uses Auto-Regressive algorithm (AR), Moving 

Average algorithm (MA) and Auto-Regressive Moving Average algorithm 

(ARMA) to describe the stationary random process. Wavelet Analysis Method 

adopts good localization characteristics of the wavelet and inverse wavelet 

transform to simulate random processes. Compared with other methods, 

Harmony Superposition Method, which is widely used in design standards and 

professional software of wind turbine structures, has its merits of high accuracy, 

simple algorithm, and strict mathematical deduction. Veers [14] firstly applied 

this method to the wind turbine structure. 

In light of the above, based on the theoretical rotational spectrum proposed 

by He [18], a simpler and more accurate rotational Fourier spectrum model 

optimized by the current authors is established to consider the influence of blade 

rotating effect and the correlation between different points located on the same 

and different rotating blades in this study. Based on the optimized coherence 

function, a comparison between the rotational Fourier spectrum model and real 

data is conducted to confirm high accuracy of the rotational Fourier spectrum 

model. Moreover, parameter analyses are carried out in details. Finally, 

turbulent wind fields around the tubular tower using the Kaimal spectrum and 

the rotating blades adopting rotational Fourier spectrum are simulated based on 

the Harmony Superposition Method. 

2.  Rotational Fourier spectrum model 

2.1. Physical mechanism 

 

With blades rotating, the spatial position of any point located on the blade 

varies. Hence, the wind speed of any point on the blade rotational plane not only 

reflects the fluctuating property of wind speed itself but also involves the wind 

speed fluctuation induced by periodic variation of a spatial point coordinate. To 

accurately describe the wind speed time series of rotating blades, the Cartesian 

coordinate system should be transformed into the rotating coordinate system 

first, and then the sampling points are regularly selected on the rotating plane of 

the rotor, as shown in Figure. 2. When the blade rotates to the sampling point, 

the wind speed of sampling point at this time should be extracted. According to 

the time sequence, a set of wind speed time series are obtained. Finally, the 

rotational Fourier spectrum is generated through Fourier transformation of the 

new wind speed time series. In fact, the greatest advantage of rotational Fourier 

spectrum is that the kinematic problem of rotating blades can be transformed 

into a static problem. 

 

Fig.2 Sampling points position in rotating plane 

2.2. Rotational Fourier auto-spectrum 

 

In general, it is assumed that the wind field ( , , , )U x y z t is uniformly 

incompressible and isotropic. The mean wind speed is represented as ( )U z , 

and the fluctuating wind speed, which is represented as ( ), , ,u x y z t ，is usually 

assumed to be a Gauss random process with zero mean value. In addition, for 

fluctuating wind field around blades, only the longitudinal component has 

obvious rotational effect, and lateral and vertical components are relatively 

complex. Herein, it is defined that the blades rotational plane is perpendicular 

to longitudinal direction, and the lateral direction is parallel to the blades 

rotational plane. Therefore, only the longitudinal fluctuating wind speed of the 

blades conducts the rotational Fourier spectrum analysis. 

It is assumed that the blades rotate at a constant frequency,
0f
. At any radius, 

r, u1 is the wind speed time series at time, t, and u2 is the wind speed time series 

at time, t +  and radius, r.  is the time interval. The cross-correlation 

function between u1and u2 is represented as follows: 

 

1 2 1 2  ( ) ( )u uR E u t u t = +    (1) 

 

According to the Wiener-Khintchine formula [22], the cross-power 

spectrum density between 1u and
2u is as follows: 

 

1 2 1 2

2  ( ) ( ) i f

u u u uS f R e d  
+

−

−

=   (2) 

 

The corresponding inverse Fourier transformation is as follows: 

 

1 2 1 2

2  ( ) ( ) i f

u u u uR S f e df 
+

−

=   (3) 

 

It is assumed that the fluctuating wind velocity obtained by sampling in the 

blade rotational plane is isotropic. Therefore, auto-power spectral density is 

independent of the spatial position of sampling points. The classical fluctuating 

wind spectrum density, such as the Von Karman wind spectrum [23] and the 

Kaimal wind spectrum [24, 25], is adopted as auto-power spectrum in this study. 

The relational expression between the fluctuating wind velocity cross-power 

spectrum and auto-power spectrum (origin spectrum) is represented as follows: 

 

1 2 1 1 2 2
  ( ) ( ) ( ) ( , ) ( ) ( , )u u u u u u uS f S f S f f S f f   = =  (4) 

 

where ( , )f  is the coherence function. Dragt [26], Sørensen[27] and 

Veers [15] suggest the following exponential form [28]: 

 

( )
 ( , ) exp( )

h

a d f
f

U


 

 
= −  (5) 

In Equation 5, a is the decay constant. The specific value of a, which is 

obtained by experiment, ranges from 7~20. hU  is the mean wind speed at the 

height of the hub;

 

( )d  is the distance between two points during time,  , as 

is shown in Figure 3. The calculating equation recommended by Dragt [26] is 

as follows: 

 

( ) 02
  2 sin 2 sin

2 2

f
d r r

  
 = =  (6) 

  

Fig.3 The geometry sketch diagram of 

rotational Fourier auto-spectrum 

Fig.4 The geometry sketch diagram of 

rotational Fourier cross-spectrum 
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According to Tayor frozen hypothesis [29, 30], the cross-correlation 

function between 1u and 2u can be transformed into the auto-correlation 

function for any point at different times, namely,
1 2

ˆ ( ) ( ) 
uu u uR R = . 

Therefore, the rotational Fourier auto-spectrum at any point of blades could be 

obtained through Fourier transformation from auto-correlation function ˆ ( )uuR  , 

and the specific formula is as follows: 

 

2

2 ( )

ˆ ˆ  ( ) ( )

= ( ) ( , )

i f

uu uu

i f f

u

S f R e d

S f df f e d

 

 

 

  

+

−

−

+ +

−

− −

= 

   



 

 (7) 

 

It can be seen in Equation 5 that the coherence function ( , )f  belongs to 

the triangular form of Fourier series and the period is 01 f . Therefore, it can be 

expanded into the exponential form of the Fourier series as follows: 

 

02
 ( , ) ( )    

i nf

n

n

f t f e
  

+

=−

=   (8) 

 

In Equation 8, 0f is the rotating frequency of blades; ( )nt f is the complex 

Fourier coefficient, namely, rotational mode, given in Equation 9. 
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The property of Dirac delta function, namely, δ function can be represented 

as follows: 

 

02 ( )

0  ( )i f f nfe d f nf f   
+

− − −

−
= − −  (10) 

 

Substituting Equation 8 and Equation 10 into Equation 7, the basic equation 

of rotational Fourier auto-spectrum can be obtained as follows: 

 

0 0 ̂ ( )= ( ) ( )uu n u

n

S f t f nf S f nf
+

=−

−  −  (11) 

 

Furthermore, Substituting Equation 9 into Equation 11, the specific formula 

of the rotational Fourier auto-spectrum is obtained in the following form: 

 

2

0 0
0

1
 ̂ ( )= ( , ) cos( ) ( )

2
uu u

n

S f f nf n d S f nf


   


+
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2.3. Rotational Fourier cross-spectrum 

 

In light of the above, the PNL model does not consider the correlation of 

fluctuating wind speed at different points on rotating blades. In addition, the 

SNL model considers the correlation of wind speed at different points through 

directly adopting the coherence function to construct the rotational power cross-

spectrum in the Cartesian coordinate system. It is worth noting that due to the 

rotational effect of blades, the method of employing the product of rotational 

power auto-spectrum and coherence function does not work. Herein, the 

correlation of the fluctuating wind speed at different points on the rotating 

blades is deduced in the rotating coordinate system. 

It is assumed that iu represents the wind speed time series of any point at 

time, t and radius, ir . ju is the wind speed time series of another point at time, 

t +  and radius, jr . ( )d  is the distant between two points, as shown in 

Figure 4. The equation for determining d’ is given in Equation 13. 

 

( ) 2 2

0   2 cos(2 )i j i jd r r rr f    = + − +  (13) 

 

In this equation,  is the initial phase angle of the blade; when two points 

are on the same blade, 0 = , and the rotational Fourier cross-spectrum is 

described as the cross-spectrum between different points on the same blade. 

When two points are located on the different blades, 2 N = , where N is 

the number of blades. For the wind turbine structures applied in this study,

2 3 = , and the rotational Fourier cross-spectrum is expressed as the cross-

spectrum between different points on the different blades. Therefore, through 

introducing the initial phase angle , the rotational Fourier cross-spectrum truly 

considers the correlation of the fluctuating wind speed on the blades rotating 

plane.  

The derivation of rotational Fourier cross-spectrum is similar to the 

rotational Fourier auto-spectrum, and only the coherence function ( , )f 

transforms into the following form: 

 

0(2 )
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i n f

n

n

f t f e
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The corresponding complex Fourier coefficient, namely, the rotational 

mode can be expressed into the following equation: 
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Finally, the basic and detailed forms of the rotational Fourier cross-

spectrum are given in Equation 16 and Equation 17, respectively. 

0 0 ̂ ( )= ( ) ( )
i j

i n

u u n u

n

S f t f nf S f nf e 
+

 

=−

 −  −   (16) 
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0 0
0
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2i ju u u

n

S f f nf n d S f nf

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

+

=−

 −   −   (17) 

It can be seen from Equation 11 and Equation 16 that the rotating Fourier 

spectrum is superposed of infinitely classical fluctuating wind origin spectrum, 

obtained by translating to integer times of rotating frequency 0f , multiplied by 

corresponding rotational mode. Therefore, it is not accurate to apply the classic 

fluctuating wind speed spectrum (auto-power spectrum) such as the Von 

Karman spectrum and the Kaimal spectrum for predicting the extreme loads and 

fatigue loads. 

It is worth mentioning that when the order of the Fourier series, n is 

sufficiently large, both Equation 12 and Equation 17 involve the integral of high 

oscillatory functions. In order to avoid the occurrence of Runge oscillation, the 

classical Filon method [31] is applied to solve this type of integral. 

 

2.4. The Comparison between Origin Spectrum and Rotational Fourier 
Spectrum 

 

In order to compare the difference between the origin spectrum and 

rotational Fourier spectrum, the measured wind turbine structure at Clayton in 

New Mexico, conducted by Connell [11], is taken as a case. In the case provided 

by Connell, the height of the hub is 30.5m. The radius of the blades is 19m. The 

mean wind speed at the height of the hub is 8.21m/s. The rotating frequency of 

blades is 0.667Hz. The longitudinal turbulence standard deviation is 0.79m/s. 

The ground roughness length is 0.005m. The longitudinal turbulence integral 

scale is 112m. The lateral turbulent integral scale is 45m. In addition, the Von 

Karman fluctuating wind spectrum is adopted as the origin spectrum of the 

rotational Fourier spectrum. The specific equation is as follows [23]: 

 

5 62
2

( ) 4
 

1 70.8( )

u u hub

u
u hub

f S f f L V

fL V

 
=
 + 

 (18) 

In this equation, Vhub represents the mean wind speed at the height of hub; 

σu represents the longitudinal turbulence standard deviation; Lu represents the 

longitudinal turbulence integral scale. 

Based on the parameters provided above, a program was created by using 

MATLAB software [32]. The calculated results are shown in Figure 5 through 

Figure 6. 

As shown in Figure 5(a), with an increase in the order n (integer multiple 

of rotational frequency) of the origin spectrum, the spectrum peak is translated 

to the position which corresponds to n times of rotating frequency, and each 

peak value is equal. Moreover, the peak values of n-order rotational mode are 

observed at the integer multiple of the rotating frequency, and with increase in 

order n, the peak values gradually decrease (see Figure 5(b)). 
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Compared with the Von Karman spectrum, the energy distributions of the 

rotational Fourier spectrum, which transfer from the low frequency range to 

high frequency range, produce fundamental change, as shown in Figure 6. In 

addition, the spectrum peak values appear at the integer multiples of the rotating 

frequency. 

 

(a)  n-order origin spectrum curve 

 

(b)  n-order rotational mode curve 

Fig.5 The translated origin spectrum and rotational mode curve 

 

Fig.6 Comparison between Von Karman spectrum and rotational Fourier spectrum 

 

2.5. Optimization of Coherence Function 

 

It can be observed from Equation 12 and Equation 17 that the coherence 

function has a key influence on the rotational Fourier spectrum. Generally, the 

coherence function adopts Davenport exponential form. Firstly, the coherence 

function type in Equation 5 and Equation 6, recommended by Dragt [26], is 

explored. It can be observed in Figure 5(b) that the frequency of each order 

rotational mode only starts from the corresponding integer multiples of the 

rotating frequency. The reason for this is that in order to guarantee the coherence 

function satisfying the equation 00 ( , ) 1f nf  −  , the frequency must meet

0f n f  based on the positive decay constant. 

As shown in Figure 5(b), the rotational modes appear as stepped variations 

at the integer multiples of the rotational frequency, the case that is unreasonably 

held by Dragt [26]. In order to investigate the essential cause of this variation, 

the first-order coherence function and rotational mode varying with rotating 

angle  near the rotating frequency 0f  are taken as an example, as drawn in 

Figure 7. 

It can be seen from Figure 7 that when 0 0.667f f= = , the integral of the 

first-order rotational mode and coherence function values in the interval

 ,0 2 are always equal to 0 and 1, respectively. When the frequencies f stay 

away from the rotating frequency 0f , the integral values of the first-order 

rotational mode, which are greater than 0, increase first and decrease afterwards 

as rotating angle  increases. In addition, the coherence function, which is 

obviously smaller than the corresponding values when 0 0.667f f= = , 

decreases first and increases afterwards. 

 

(a)  Rotational mode curve 

 

(a) Coherence function curve 

Fig.7 Rotational mode and coherence function varying with rotating angle 

On the whole, the reason why the rotational Fourier spectrum appear as 

stepped variations at the integer multiples of the rotational frequency is because 

the coherence function values are always equal to 1 when 0f nf= , leading to 

the results that each order rotational mode is always equal to 0 when 0f nf= . 

In fact, the δ function and constant, 1 are conjugate functions of a pair of Fourier 

transformations. When the frequency, f is equal to 0nf , the coherence function 

values are always equal to 1, hence the rotational mode function is equal to the 

δ function. According to the property of Dirac delta function, only when n is 

equal to 0, this function is not equal to 0, which contradicts the fact that each 

order rotational mode value is greater than 0 except when the frequency f is 

equal to 0nf . In addition, the frequency cannot cover the whole frequency 

ranges. Consequently, the exponential form of coherence function proposed by 

Dragt [26] and Veers [15] is unreasonable, and the reasonable function form 

should be reconstructed. 

According to the above analysis, the reconstructed coherence function 

should be less than 1. Therefore, the traditional Davenport type should be 

modified through adding minor items. The modified coherence function 

suggested by IEC61400-1:1999 [33] and Burton [16] is as follows: 

2 2

0.12
 ( , ) exp( 8.8 ( ) )

hub u

f
f d

V L
  

   
= −   +      

   

 (19) 

Furthermore, the modified coherence function model is put forward by 

IEC61400-1:2005[25] and GBT 18451.1-2012 [34]. The specific formula takes 

the following form: 

2 2

0.12
 ( , ) exp( 12 ( ) )

hub u

f
f d

V L
  

   
= −   +      

   

 (20) 

where uL is equal to 8.1 u  and u represents the turbulent scale 

parameter. Here, values of u at the height of hub are described as follows [25, 

34]: 

0.7    z 60m
 

42    z 60m
u

z

m


 = 


 (21) 

The definitions of other parameters have been described earlier. 
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(a) Each order rotational mode when a is equal to 10 

 

(b) Each order rotational mode when a is equal to 12 

Fig.8 Each order rotational mode when a is equal to 10 and 12 

As is shown in Equation 19 and Equation 20 and compared with coherence 

function form shown in Equation 6 and Equation 7, the modified formulas not 

only add minor terms, but also gradually adjust the decay coefficient a. In 

general, the value of a ranges are from 7 to 20. The variation laws between each 

order rotational mode and frequency when a is equal to 10 and 12 are provided 

in Figure 8. 

It can be shown in Fig.8 that being different from the coherence function 

form shown in Equation 6 and Equation 7, each order rotational mode after 

adopting the modified coherence function, which distributes over the whole 

frequency range, are all greater than 0 when 0f nf= even if 10n = . 

Moreover, when the same decay coefficient a is employed, stepped variation 

values induced by adopting the modified coherence function are smaller than 

the corresponding values caused by the traditional Davenport type of coherence 

function (see Figure 5(b) and Figure 8(a)).Therefore, the modified coherence 

function, through adding minor items is reasonable. Apart from this, it is 

necessary to investigate the influence of the decay coefficient on the rotational 

mode and rotational Fourier spectrum. Herein, based on the modified coherence 

function form, a is selected as 7, 8.8,10,12 and 18 to study this influence, 

respectively. 

2.5.1. Impact on Rotational Mode and Rotational Fourier Spectrum 

The impact of the decay constant on the rotational mode function is 

explored first. The rotational mode values at rotating frequency 0f , 

corresponding to different decay constant are provided in Figure 9(a). Due to 

numerous data points at rotating frequency 0f , the locally enlarged drawings at 

rotating frequency 0f are provided to clearly show the influence of the decay 

constant, as illustrated in Figure 9(b). 

 

 

(a) First-order rotational mode  

 

(b) locally enlarged drawings at the rotating frequency 

Fig.9 First-order rotational mode corresponding to different decay 

 

According to Figure 9, within the range staying away from 0f , the decay 

constant can decrease the rotational mode values. Moreover, the decay constant 

could lead to higher rotational mode values near 0f .It is worth noting that when 

the decay constant reaches the extreme value of 20, the drop-off phenomenon 

is least significant near 0f  (see Figure 9 and Figure 10(a)). Also, Figure 10(b) 

shows each order of rotational mode function when a is equal to 20. It is clearly 

seen that compared with the decay constant adopted by IEC61400-1:2005[25] 

(a=12), each order value of rotational mode is dramatically increased near 0
nf

when a is equal to 20 (see Figure 8(a) and Figure 10(b)). 

 

 

(a) First-order rotational mode when a is equal to 18 and 20 

 

(b) Each order rotational mode when a is equal to 20 

Fig.10 Rotational mode values when a is equal to 18 and 20 

 

In general, the increased decay constant gives each order rotational mode 

the tendency to be sharp, and increases the energy at the integer times of the 

rotating frequency. In other words, with increase in decay constant, the drop-off 

phenomenon can be further eliminated. 

Furthermore, the influence of the decay constant on the rotational Fourier 

spectrum needs to be studied, as detailed in Figure 11. Being similar to the 

results of rotational mode, the increased decay constant makes the energy 

transfer from the low frequency ranges to high frequency ranges. Based on 

Equation 11 and Equation 16, each rotational mode has a drop-off phenomenon 

at the integer times of the rotating frequency, which eventually brings about the 

same case for rotational Fourier spectrum. In addition, the drop-off phenomenon 

is least evident at the integer times of the rotating frequency when a is equal to 

20. 
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Fig.11 Rotational Fourier spectrum corresponding to different decay constant 

 
Overall, the selection of decay constant has a great influence on the 

rotational mode function and rotational Fourier spectrum. The increased decay 

constant makes the wind field energy around blades generate redistribution, and 
further weakens the drop-off phenomenon. Therefore, considering that the 

decay constant (a=12), which is applied by IEC61400-1:2005[25], still lead to 
significant drop-off phenomenon, the upper limit of decay constant 20a = is 

recommended and adopted in the next section. 
 

2.5.2. Comparison with measured data 

According to Equation 12 and the optimized coherence function, the 

rotational Fourier spectrum is programmed, and then the calculated results are 

compared to the measured rotational spectrum conducted by Connell [11]. It is 

worth mentioning that the measured rotational spectrum only takes the first five 

harmonic frequencies. This is possibly due to the fact that Nyquist frequency 

(half of the sampling frequency) must exceed the highest frequency of sampled 

signal to ensure the reconstruction of the original continuous signal. Compared 

results are provided in Figure 12(a). As indicated in Figure 12(a), the rotational 

Fourier spectrum values based on proposed model in this study and optimized 

decay constant have better agreement with measured rotational spectrum values. 

In order to further verify the accuracy of the rotational Fourier spectrum 

model, this spectrum model is compared with the Connell spectrum (PNL 

model) as well as TurbSim calculation spectrum (based on the modified SNL 

model) [35], as shown in Figure 12. It can be clearly seen that the deviation 

values of the PNL model from the measured rotational spectrum in the wave 

trough are relatively larger, compared with the proposed rotational Fourier 

spectrum in this study. The rotational Fourier spectrum has good agreement 

with the TurbSim calculation spectrum, especially in the high frequency range 

which is important for rotational sample. This apparent difference in the low 

frequency range between TurbSim calculation spectrum and rotational Fourier 

spectrum is attributed to that the Von Karman spectrum used as origin spectrum 

of SNL model has lower accuracy when the frequency is smaller than the 

rotating frequency of blades [15]. Therefore, the rotational Fourier spectrum 

around the blades can accurately predict the extreme load and fatigue load of 

wind turbine structure. 

 

 

（a） Comparison with measured rotational spectrum and TurbSim calculation 

spectrum 

 

（b） Comparison with Connell spectrum (PNL model) 

Fig.12 Comparison between the proposed rotational Fourier spectrum and the 

different rotational spectrum models 

 
2.6. Parameter analysis of Rotational Fourier Spectrum 

 

The rotational Fourier spectrum model is related to the calculated radius of 

the blade, rotating frequency of blades, mean wind speed at the height of hub, 

and the fluctuating wind speed correlations of different points. This study 

considers a typical pitch-controlled 1.25MW wind turbine structure, based on 

which parameter analyses of rotational Fourier spectrum are carried out to 

explore their influence laws.  

In this study, it is considered that the diameter of blades is 64.35m; the rated 

rotating speed of blades is 17.8r/min; the height of the hub is 63.342m; the mean 

wind speed at the height of hub Vhub is 12 m/s and ground roughness length is 

0.005m. The origin spectrum of the rotational Fourier spectrum adopts the 

Kaimal wind spectrum recommended by IEC61400-1:2005[25] where the 

detailed formula is as follows: 

 

2 5 3

( ) 4 ( )
 

(1 6 ( ))

u u hub

u u hub

fS f f L V

f L V
=

+
 (22) 

 

According to the IEC standards [25], the longitudinal turbulence standard 

deviation u is 1.752m/s and the longitudinal turbulence integral scale, uL is 

340.2m. The coherence function uses the optimized exponent form, and the 

specific equation is as follows: 
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where ( )d  represents the distance between two points. For the 

rotational Fourier auto-spectrum, ( ) 2 sin
2

d r



 

=   
 

 and for the 

rotational Fourier cross-spectrum, Equation 13 is adopted.  

 

2.6.1. Calculated radius of blades 
As can be seen from Equation 23, the calculated radius r on the blade is 

closely related to the coherence function, which further influences the rotational 

Fourier spectrum. In this study, r is taken as 0, 10, 20 and 30m to investigate 
this influence. The analysis results are provided in Figure 13(a). 

It is clearly seen in Figure 13(a) that when the calculated radius is equal to 

0, the calculated point locates at the height of hub, and the rotating effect 

disappears, indicating that the rotational Fourier spectrum degenerates into the 

Kaimal spectrum of fixed points. Moreover, within low frequency components 

staying away from 0nf , the increased calculated radius can decrease the 

rotational Fourier spectrum values. For high frequency components near 0nf , 

the increased radius could lead to larger rotational Fourier spectrum values. This 

implies that the energy transfers from the low frequency to high frequency 

gradually, and high frequency oscillation becomes more and more severe. It is 

worth noting that when the calculated radius reaches 30m, the energy 

redistribution phenomenon is most significant. 
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(a) The influence of calculated radius on rotational Fourier spectrum 

 

(b) The influence of rotating frequency on rotational Fourier spectrum 

Fig.13 The influence of radius and blades rotating speed on rotational spectrum 

 

2.6.2. Rotating speed of blades 

According to Equation 12, the rotational Fourier spectrum is closely related 
to the rotating frequency of the blades. For the 1.25MW wind turbine structure 

studied in this study, the working speed of the rotor is 9.6~17.8 r/min, and 

therefore the corresponding rotational frequency range is 0.16~0.30 Hz. To 
study the influence of the rotating speed on the rotational Fourier spectrum, the 

rotating frequencies are chosen as 0.167 Hz, 0.232 Hz and 0.297Hz and the 

corresponding calculated results are given in Figure 13(b). 

According to Figure 13(b), the increased rotating frequency can result in 

larger rotational Fourier spectrum peak values, which indicates that the rotating 

effect of the blades becomes more significant. In addition, with an increase in 

the rotating frequency, the peak values of the rotational Fourier spectrum near 

0nf  translate to the high frequency range side. 

 

2.6.3. Mean wind speed 

For the wind turbine structures in service discussed in this study, the cut-in 

wind speed (minimum wind speed of electrical generation) is 4m/s, the rated 
wind speed (corresponding to the rated power) is 16m/s, and the cut-out wind 

speed (maximum wind speed of electrical generation) is 25m/s. To deeply 

understand the influence of the mean wind speed at the height of the hub on the 
rotational Fourier spectrum, the mean wind speed is selected as 12, 18, and 

24m/s. The analysis results are shown in Figure 14(a). It is clearly seen that the 

increased mean wind speed increases the rotational Fourier spectrum values and 
leads to significant rotating effect of the blades. 

 

 
(a) The influence of mean wind speed on rotational Fourier spectrum 

 
(b) The comparison of rotational Fourier spectrum for the same blade 

 
(c)  The comparison of rotational Fourier spectrum for the same radius 

 
(d) The comparisons for different rotational Fourier cross-spectrums 

 

Fig.14 The influence of mean speed and correlation between  

different points on rotational Fourier spectrum 

 
2.6.4. Correlation between different points 

The influence of the correlation between different points on the wind-
induced responses and fatigue issues is significant. The rotational Fourier 

spectrum model proposed in this study not only considers the correlation 

between different points located on the same blade, but also considers those 
located on different blades. Therefore, the rotational Fourier auto-spectrum

1 2 30 , 0r r m = = = , rotational Fourier cross-spectrum including

1 210 ,  30 0r m r m = = =， , 1 2 30 2 3r r m  = = =，  and

1 210 ,  30 2 3r m r m  = = =，  are considered to investigate the impact of 

the correlation. The corresponding calculated results are given in  Figure 
14(b) through Figure 14(d). As can be seen from Figure 14(b), for the same 

blade, the rotational Fourier auto-spectrum values are obviously greater than the 

rotational Fourier cross-spectrum values corresponding to different radii, 
especially within the high frequency ranges. Under the condition of the same 

radius, the rotational Fourier auto-spectrum values are almost the same as the 

rotational Fourier cross-spectrum values corresponding to different blades. 
However, the initial phase angle of the blade,   brings about a significant 

influence on the rotational Fourier spectrum values (see Figure 14(c)). In 
addition, for the rotational Fourier cross-spectrum, the amplitude of the 

rotational Fourier cross-spectrum corresponding to the same radius and different 

blades is largest, and the rotational Fourier cross-spectrum corresponding to 
different blades and radii leads to the smallest amplitude (see Figure 14(d)). 

 

3.  Wind field simulation of wind turbine structure 

 

Owing to the strongly nonlinear property of wind turbine structures, the 

time-domain method is used to directly understand the dynamic characteristics 
and obtain more information about fatigue issues compared with the frequency-

domain method. Moreover, dynamic time history analysis of wind turbine 

structures requires time series data of the wind speed. In general, the artificial 
wind field simulation method, which is economical, fast and accurate, is widely 

used to obtain the accurate wind speed series data. 

 
3.1. The application scope of turbulent wind spectrum 

 
According to the kinetic property, parts of the wind turbine structures can 
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be classified into two types: the fixed part such as tower and the periodic rotating 

parts such as the blades. As mentioned previously, the wind field around the 
tower is essentially different from that around the blades. For any point on the 

tower, wind speed is only a function of time, so its turbulent wind spectrum is 

the same as that of high-rise buildings. In this study, the Kaimal wind spectrum 
recommended in IEC61400-1:2005 [25] is adopted to simulate the turbulent 

wind field of the tower. For any point attached to the rotating blade, the wind 

speed is not only related to the time, but also the periodic variations of the spatial 
position coordinate. Therefore, the turbulent wind spectrum of the blades needs 

to consider the rotational effect. This study uses the rotational Fourier spectrum 

deduced in the previous section to simulate the wind field of the blades. The 
illustrated diagram is given in Figure 15. 

 

 
Fig. 15 Turbulent wind field model of wind turbine structures 

 
3.2. Wind field simulation of tubular tower  

 

Generally, for any point on the wind turbine structure, the wind speed 
consists of two parts: mean wind speed and fluctuating wind speed. The 

fluctuating wind field can be deemed as a four dimensional univariate random 

field. Furthermore, if the fluctuating wind field can be divided into the 
fluctuating wind field at each discrete spatial point, the fluctuating wind field 

can be assumed to be a multi-dimensional and multivariate stationary Gauss 

random process. 
For mean wind speed, the exponential model describing the wind shear 

effect is widely used in the research field of wind turbine structures. 

For wind turbine structures, the random characteristics of fluctuating wind 
speed at any point on the tubular tower can be described by the wind speed 

spectrum. As mentioned previously, the Kaimal wind spectrum is used to 

simulate the wind field of the tower, and shown in Equation 22. Moreover, the 
correlation between two points is reflected by the cross-power spectrum. 

Therefore, the cross-power spectrum can be described as follows: 

  ( ) ( ) ( ) ( )uv uu vvS f S f S f Coh f=   (24) 

At this time, the Davenport correlation function, presented by Davenport, 

is used for the calculation of the correlation between different spatial points on 
the tower. The detailed expression is as follows [37]: 
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Where f represents fluctuating wind frequency; yi,zi (i=1,2) represents the 
lateral and vertical coordinates of any two points on the tubular tower, and the 

line of two points is perpendicular to the direction of the mean wind speed; Cy,Cz 

represents the lateral and vertical exponent decay coefficient, the values of 

which are recommended as 16 and 10 respectively. U(z1), U(z2) represents the 

mean wind speed at the height of z1and z2. In general, under the fixed fluctuating 

wind frequency, the correlation between two points on the tower becomes 

smaller with increase in distance between the two points. 
 

3.3. Wind field simulation of the blades  

 
The most significant difference between the wind field around the blades 

and the wind field of the tower is that the influence of the rotating effect on the 

wind field around the blades must be considered when the wind turbine structure 
is in operation. In addition, the mean wind speed for any point on the blade 

shows a periodic variation with the rotation of the blade. 

 
3.3.1 Mean wind speed 

As mentioned previously, when blades are in operation, the height of any 
point on the blade exhibits periodic harmonic variations. Based on the 

exponential model, the mean wind speed for any point at the radius r of the blade 

can be obtained as follows: 
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U r U z z z r

z
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In this equation, r represents the radius of calculated point on the blade, i.e. 

the distance between the center of hub and the calculated point along the radial 

direction; 
02 f t  = + is the azimuth angle of blades at the time, t in the 

vertical rotating plane； is the initial phase angle, and the location where the 

blade coincides with the opposite direction of gravity is defined as 0o azimuth 

angle. It is noted that the blades rotate along the anti-clockwise direction. hz

represents the height of hub; represents the ground roughness coefficient. 

 
3.3.2. Fluctuating wind speed 

The random characteristics of fluctuating wind speed for any point on the 

blades can be reflected by the rotational Fourier spectrum model, which consists 
of the rotational Fourier auto-spectrum model and the rotational Fourier cross-

spectrum model. The rotational Fourier auto-spectrum is shown in Equation 11. 

Moreover, the rotational Fourier cross-spectrum model is given in Equation 16. 
In addition, the Kaimal wind velocity spectrum is recommended to become the 

origin spectrum of the rotational Fourier spectrum. 

 
3.4. Harmony superposition method 

 

The time series of the incoming wind speed for the tower and the blades are 

simulated through the harmony superposition method proposed by Shinozuka 

[38]. The time series of the fluctuating wind speed can be simulated using the 

following equation: 
 

1 1

  ( ) 2 ( ) cos ( )
j N

j jk kl kl jk kl kl

k l

u t H t     
= =

 =  − +   (27) 

 

In this equation, ( )jk lH  represents elements of the lower triangular 

matrix ( )lH , which are acquired by the Cholesky decomposition of wind 

spectrum matrix ( )lS .The spectrum matrix ( )lS  consists of auto-power 

spectrum, which can be obtained using Equation 22 and Equation 11 for the 

tower and blades respectively, and cross-power spectrum which can be 

calculated using Equation 24 and Equation 16 for the tower and blades, 

respectively.
kl represents the double index frequency. 

kl is the random 

phase angle. N represents the sampling points. 
up N  = is the frequency 

increment;
up is the upper bound cutoff frequency. 

 
3.5. Case analysis and results 

 

A typical pitch-controlled 1.25MW wind turbine structure with three blades 
is taken as the case to carry out the wind field simulation. The height of the hub 

is 63.342m. The diameter of the blade is 64.35m. The mean wind speed at the 

height of hub is assumed as 12m/s. The rotating frequency of blade is 0.297Hz. 
In order to input the aerodynamic loads acting on the wind turbine structures in 

the wind-induced vibration response analysis, three uniformly distributed 

lumped points along the radial direction of the blade are chosen as load input 
points and seven non-uniform distributed lumped points on the tubular tower 

are taken as the load input points. Therefore, the lumped points mentioned 

above are adopted to simulate the wind field of the wind turbine structures. The 
simplified dynamic analysis model of wind turbine structure is shown in Figure 

16. 

 
Fig. 16 Dynamic analysis model of wind turbine structure 

 

3.5.1. Simulated results of the tower 
As mentioned above, the mean wind speeds of the tubular tower at point 1 

through point 7 are given in Table 1. 
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Table 1 

The mean wind speed of the tower at each calculated point 

Number  Calculated height (m) Mean wind speed (m/s) 

7 63.342 12.00 

6 55.298 11.71 

5 47.255 11.49 

4 39.211 11.23 

3 26.141 10.70 

2 13.070 9.85 

 

In addition, based on the FFT technology, the fluctuating wind speed time 

series of the tubular tower at each calculated point are obtained through the 
MATLAB program [32]. Based on the harmony superposition method, the 

upper bound cutoff frequency,
up is set to be 8Hz in the process of computing. 

The number of the frequency sampling points, N is 4096, and the time 

increment, t is equal to 0.0625s. The duration, t is equal to 512s. The 

fluctuating wind speeds of the tubular tower at point 2 and point 6 (selected as 

a representative) are shown in Figure 17. 

 

 
(a)  Fluctuating wind speed at point 2 

 
(b)  Fluctuating wind speed at point 6 

Fig. 17 Fluctuating wind speed of tubular tower 

 
As indicated in Figure 17, the statistical characteristics of the simulated data 

are consistent with the assumptions. In order to verify the validity and reliability 

of the simulation method, comparative analyses between the calculated 
spectrum acquired through the spectrum analysis of the simulated wind speed 

time history, and the target wind spectrum (Equation 22) are carried out. The 

comparisons of wind spectrum at simulation point 2 and point 6 (selected as a 
representative) are shown in Figure 18. 

 

 
(a) The comparison diagram at point 2 

 

 
(b) The comparison diagram at point 6 

Fig. 18 Comparison of simulated spectrum and target spectrum of tubular tower 

 

It is clearly seen in Figure 18 that the spectral trend line of the simulated 
wind spectrum is consistent with that of the target wind spectrum, and the mean 

value of the spectral line has good agreement with the target wind spectrum. 

Therefore, the method adopted in this study is effective to simulate the 
fluctuating wind speed of the tubular tower. Moreover, the parameters used in 

this study are reasonable and practical. 

 
3.5.2. Simulated results of blades 

According to Equation 26 and parameters given for the case, the mean wind 

speed at the calculated points of blades can be determined. As the period of the 
mean wind speed in China is 10min, only the first 60s duration are selected to 

clearly show the wind speed variation law against time. The reason for this is 

that periodic variation law of the blade mean speed is identical with those in the 
remaining duration. Comparisons of mean wind speed time history at different 

radii of the same blade are given in Figure 19(a). Comparisons of mean wind 

speed at the same radius of different blades are shown in Figure 19(b). 
 

 
（a） The mean wind speed comparison from point 14 to point 16 

 

 
（b） The mean wind speed comparison at point 10, point 13 

and point 16 
Fig. 19 The mean wind speed comparison of the blades 

 
It can be seen from Figure 19 that being different from the mean wind speed 

of calculated points on the tower, the mean wind speed of the calculated points 

on the blades shows a periodic variation, the varying frequency of which is 
rotating frequency of blades. In addition, with increasing calculated radius, the 

mean wind speed of calculated points on the same blade gradually increase. For 

the calculated points on the same radius of different blades, there is a phase 
difference, the value of which is2π/Nb, between the different blades. Nb 

represents the number of blades. For the case investigated in this study, the 

phase difference is2π/3. 
Based on the harmony superposition theory and FFT computing 

technology, the program code developed in MATLAB [32] is used to acquire 

the fluctuating wind speed of uniformly distributed calculated points on the 
blades. The simulated parameters are identical to those adopted in the tubular 

tower. Similarly, the fluctuating wind speed of calculated point 9,12 and 15 

(selected as a representative) on the blades are provided in Figure 20.  
 

 
（a） Fluctuating wind speed at point 9 
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（b） Fluctuating wind speed at point 12 

 
（c） Fluctuating wind speed at point 15 

Fig. 20 Fluctuating wind speed of blades based on rotational Fourier spectrum 

 

Similarly, the statistical analysis results of fluctuating wind speed are 
consistent with the theoretical hypothesis (see Figure 20). 

Moreover, the calculations of fluctuating wind speed for corresponding 

points based on the Kaimal wind spectrum [3,9] are carried out, in order to 
consider the rotating effect of blades, as shown in Figure 21. 

 

 
（a） Fluctuating wind speed at point 9 

 
（b） Fluctuating wind speed at point 12 

 
（c） Fluctuating wind speed at point 15 

Fig. 21 Fluctuating wind speed of blades based on the Kaimal spectrum 

 
As can be illustrated in Figure 21, compared with the fluctuating wind 

speed without considering the rotating effect of blades, the fluctuating wind 

speed amplitude and vibration frequency based on rotational Fourier spectrum 
significantly increase. The reason for this is that after considering the rotating 

effect of blades, the fluctuating wind speed not only reflects the fluctuating 

characteristics against the time, but also exhibits the spatial variation property 
induced by the periodic coordinate variation of calculated point on the blade. In 

summary, the increased amplitude and vibration frequency of fluctuating wind 

speed inevitably have a significant influence on the extreme load and fatigue 
load of the wind turbine structures. This is the essential purpose of the rotational 

Fourier spectrum study. 

In order to confirm the effectiveness and reliability of the simulated 
method, the comparisons between the calculated rotational Fourier spectrum 

obtained by spectrum analysis of simulated fluctuating wind speed on the blades 

and the target rotational Fourier spectrum (Equation 12) are conducted, and the 
corresponding results are shown in Figure 22. 

 

 
（a） The comparison diagram at point 9 

 
（b） The comparison diagram at point 12 

 
（c） The comparison diagram at point 15 

Fig. 22 Comparison between the simulated spectrum and target spectrum 

 

Comparative results from Figure 22 also show that the calculated wind 
spectrums give good agreement with the target rotational Fourier spectrum. In 

general, the fluctuating wind speed is considered as a stochastic process. As a 

statistical variable, the comparison between different rotational spectrums, 
rather than between different fluctuating wind speed time series, can be 

regarded more reasonable. Both Connell [11,13,39] and Veers [15] pointed out 

that the accuracy of their own proposed rotational spectrum model should be 
verified by the comparison with other rotational spectrum models or 

measurement data. Besides, this approach can ensure the accuracy of prediction 

of wind speed by guaranteeing the same statistical characteristics [13]. The 
rotational Fourier spectrum proposed in this study for simulating the fluctuating 

wind speed of blades is made comparison with the measured rotational spectrum 

and other important rotational spectrums, which has verified high accuracy of 
the proposed rotational Fourier spectrum model. From the interpretation of the 

findings of this study, it can be deduced that the theory and method provided in 
this study can accurately predict wind speed of rotating blades which can be 

considered as a complex phenomenon.  

 
4.  Conclusions 

 
In this study, the analytical expressions of the simpler and more accurate 

rotational Fourier auto-spectrum and rotational Fourier cross-spectrum were 

systemically deduced. The optimization analysis of the coherence function and 
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parameter analysis were conducted, and wind field simulation of the wind 

turbine structures based on the harmony superposition method were carried out. 
According to the analytical results, the main conclusions are noted as follows: 

(1) The modified rotational Fourier spectrum model not only deals with the 

rotating effect of blades based on the physical mechanism, but also reflects the 
correlation between different points located on the same and different rotating 

blades. Therefore, compared with the classical wind spectrum model (origin 

spectrum), the rotational Fourier spectrum model presented in this study is more 
accurate to predict the extreme loads and fatigue loads. 

(2) Compared with the Von Karman spectrum, energy distributions of the 

rotational Fourier spectrum are significant, especially within the high frequency 
ranges. Moreover, the spectrum peak values appear at the integer multiples of 

the rotating frequency. 

(3) The optimized coherence function can not only further weaken the drop-
off phenomenon of the rotational mode and the rotational Fourier spectrum, but 

also bring about more significant energy redistribution. In addition, compared 

with the PNL model, adopting the proposed rotational Fourier spectrum model 
and optimized coherence function can result in better agreement with the 

measured rotational spectrum. 

(4) The increased calculating radius and rotating frequency of the blades 
can induce more significant energy redistribution phenomenon. Additionally, 

the increased mean wind speed can lead to higher spectrum values. The 

correlations between different points of blades are quite different.  
(5) The simulations of the wind field around a tubular tower based on the 

Kaimal wind spectrum recommended in IEC61400-1:2005 and blades based on 

the rotational Fourier spectrum are reasonable and effective, by means of the 
harmony superposition method. 
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