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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

This paper proposes a dynamic response analysis method of concrete-filled steel tube (CFST) beams at the peak value stage 

under lateral impact load. Targeted calculation of the peak value stage, finite element analysis (FEA) was carried out to 

determine the calculation model suitable for the analysis of the peak value stage and the simplified trend curve of beam 

acceleration at the impact point. Then, an analysis method for calculating the dynamic response of a fixed -fixed supported 

CFST beam is proposed, which consists of the travelling hinge theorem and a prediction model of the simplified trend 

curve. The predicted simplified trend curve is applied to replace the motion constraint assumption of the impactor and beam 

in the travelling hinge model. In the meantime, the elastoplastic behaviour of the CFST beams is considered in the analysis 

process. Through the comparison of experimental results and analysis results, this analysis method can predict the time 

history curves of the acceleration and impact force of CFST beams reasonably. 
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1.  Introduction 

 

Due to the functional requirements of a structure, it is inevitable to analyse 

the dynamic response of structural members under ultimate loads. The lateral 

impact is one of the dynamic loads that cannot be ignored, which can cause 

serious damage and even the collapse of bridges and buildings [1,2]. Therefore, 

the impact resistance of structures has been studied by using several 

experiments and numerical simulations [3-9]. According to the impact load 

measured from lateral impact tests, the dynamic response process of a beam can 

usually be divided into three stages: the peak value stage, the platform stage, 

and the unloading stage [10]. The peak value stage appears earliest in the 

dynamic response process, which determines the initial state of the following 

stage. Moreover, the maximum value of the impact load also appears at the peak 

value stage. Consequently, it is of significance to gain insight into the peak value 

stage in the process of analysis and design.  

The difficulty of calculation at the peak value stage consists in the 

estimation of the beam resistance. When the impact occurs rapidly, the 

resistance of the beam at the peak value stage may be completely provided by 

inertial force. The dynamic bending moment and the shear force in a structural 

member can only be balanced with the inertial resistance of the beam and the 

impact force of the impactor [11,12]. As a result, the beam supports have no 

significant influence on the impact process [13]. Correspondingly, the dynamic 

equilibrium equation is different from that of the static case due to their different 

boundary conditions. The method which can describe this inertial resistance 

process is the travelling hinge theorem [14], which has been used by Parkes 

[15,16] to determine the dynamic responses of rigid plastic beams under lateral 

impact loads. In the calculation process, the travelling plastic hinge is used to 

replace the function of the supports. The impact force of the impactor can only 

be balanced with the inertial resistance of the beam before travelling hinge 

reaches the support constraint.  

Nevertheless, the travelling hinge theorem has not yet been adopted to 

calculate the dynamic responses of structural members at the peak value stage, 

because this model assumes that the motion of both the impactor and beam are 

the same in the impact area. This motion constraint assumption is different from 

the actual phenomenon occurring at the peak value stage. However, Pham et al. 

[17,18] show that the position of a plastic hinge could significantly affect the 

dynamic response of the structural beam because there is a possibility that the 

plastic hinge of one structural beam may not reach the support constraint during 

the dynamic response process. Therefore, when calculating the dynamic 

response of a structural member, it is necessary to describe the travelling process 

of the plastic hinge.  

The concrete-filled steel tube (CFST) beam exhibits a high bearing capacity 

and good ductility; therefore, it has become the common form of structural 

members [19-22]. The CFST beam dynamic response process obtained from 

lateral impact tests [23-26] also includes the peak value stage, the platform stage, 

and the unloading stage. However, there are several methods for calculating the 

platform stages in CFST beams [27-30], whereas those for the peak value stage 

are rare. Only the analytical calculation performed by Wang et al. [31] includes 

the peak value stage. A transient force (P)-local indentation (δ) curve, which 

expresses a quality similar to contact stiffness, was introduced to describe the 

interaction between the impactor and beam. Although this method still does not 

obtain the accurate dynamic response of the beam at the peak value stage [31], 

it includes all three stages of the dynamic response process. The reason for the 

error occurring at the peak value stage may involve overlooking the motion of 

the plastic hinge. Overall, difficulties still exist in the calculation of the peak 

value stage of CFST beams. 

This study is an attempt to address these difficulties in the calculation of 

the dynamic response of CFST beams at the peak value stage. Thus, finite 

element analysis (FEA) was conducted to investigate the dynamic behaviour of 

fixed-fixed supported CFST beams under lateral impact loads, and five lateral 

impact tests were adopted to verify the FEA results. Based on these results, an 

analysis calculation model suitable for the peak value stage as well as a 

simplified trend curve of the impact point acceleration was determined. Then, 

the dynamic responses of CFST beams at the peak value stage were calculated 

on the basis of the travelling hinge theorem and the prediction model of the 

simplified trend curve. 

 

2.  Dynamic response at the peak value stage  

 

2.1. Test description 

 

Five lateral impact tests were carried out to obtain the dynamic response of 

CFST members under lateral impact at the peak value stage. The outer diameter 

(D) of the CFST beams is 114 mm, and the thicknesses of the steel tubes, which 

are made of mild steel, are 2.0 mm and 3.5 mm. Additionally, the geometric size 

ratio of the experimental members to the actual structural member is 1:10.  

Standard tensile tests were conducted to measure the steel tube properties. 

The average static tensile strengths (fy) of the 2.0 mm and 3.5 mm steel tubes 

are 338 MPa and 323 MPa, respectively. The elastic modulus (Es) of the 2.0 mm 

and 3.5 mm steel tubes are 198 GPa and 201 GPa, respectively, and the 

corresponding elongation values are 21.68% and 21.57%, respectively. The 

density of the steel is 7850 kg/m3. Besides, nine concrete cube blocks with a 

side length of 150 mm were made to measure the concrete properties. The 

average cubic compressive strength (fcu) of the concrete block is 55 MPa, the 

elastic modulus (Ec) is 35.25 GPa, and the density is 2450 kg/m3. 

One gravity-driven impact device, composed of a rigid hammer, a mass 

block, and a sliding track, was used for generating the impact load, as shown in 

Fig. 1. The total mass of the impactor (m), including the rigid hammer and mass 
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block, was 270 kg. The impact heights of the test were selected to be 3 m, 5 m, 

and 7 m based on the effective impact length (H) of the slipway, and the 

corresponding initial impact velocities were 7.67 m/s, 9.90 m/s, and 11.72 m/s, 

respectively. The size of the hammer at the impact contact surface was 30 

mm*80 mm. The boundary conditions employed in the test were also shown in 

Fig. 1. Both ends of the beam were fixed, with the effective support length (LE) 

of the member being 900 mm. According to the provisions of BS EN 1991-1-

7:2006 [32], the distance between the impact point and the support was 1.8m 

when the impact action was caused by a derailed train. For general structural 

members with a length of 6-10m, the corresponding range of the impact point 

position was 0.18-0.3 span. Therefore, the impact point position of the test was 

located at 2/9 span, as shown in Fig. 1. The impact point was near the support 

N, at a distance of 200 mm; whereas the distance between the centre of the 

impact point and the support F was 700 mm.  

During the test process, the impactor was raised along the slipway to a 

predetermined impact height, so that the impactor was able to achieve the 

designed initial impact velocity. A force sensor used to measure the impact load 

was installed behind the rigid hammer, and the accuracies of the FEAs and 

theoretical calculations were evaluated by the obtained impact-force time 

history curve. The dynamic response of the beam was recorded with a high-

speed camera, the range of which is shown in Fig. 1. The impact point deflection 

of the member was extracted from the high-speed camera video. 

Table 1 

Details of the impact test specimens 

Specimen m (kg) VI0 (m/s) Ei  (kJ)  D (mm) LE (mm) Tb (mm) fy (MPa) fcu (MPa) 

YG1 270 7.67 7.94 114 900 2.0 338 55 

YG2 270 9.90 13.23 114 900 2.0 338 55 

YG3 270 11.72 18.54 114 900 2.0 338 55 

YG4 270 11.72 18.54 114 900 3.5 323 55 

YG5 270 9.90 13.23 114 900 3.5 323 55 

 

 

Fig. 1 Test information 

 

 

Fig. 2 FEA model 

 

2.2. Finite element analysis 

 

2.2.1 Description of the FEA model 

The deformation modes of CFST beams at the peak value stage were 

supplemented by the FEAs as well as the change trends of velocity and 

acceleration at the impact point. The deformation mode is related to the 

calculation model, with the trend curve of acceleration being a supplementary 

condition in the analysis calculation. 

The drop-weight impact test was simulated for the CFST beams based on 

the explicit criterion in LS-DYNA [33]. Fig. 2 shows a general FEA model of 

the CFST member in the simulation analysis. The drop hammer, steel tube, and 

core concrete were modelled using 8-node solid elements with reduced 

integration. The mesh convergence study was conducted to determine the 

appropriate mesh density and ensure the efficiency of the simulation. The 

maximum size of the solid elements in the simulation models is 11.5 mm. 

The material properties of the steel followed the ideal elastic-plastic model 

(MAT_3 in LS-DYNA), in which the elongation determined the failure strain 

(FS) of eroding elements. Additionally, the properties of concrete followed the 

concrete damage model (MAT_72R3 in LS-DYNA) developed by Malvar et al. 

[34]. This concrete model has also been successfully applied to analyse the 

behaviours of CFST beams under lateral impact [23,27,31], which includes 

three independent surfaces (the initial yield surface, the maximum failure 

surface, and the residual failure surface) to describe the elastic-plastic response 

of the concrete [33,34].  

During the dynamic response process, the strength of steel and concrete 

increases with the increase of the strain rate, which needs to be considered in 

FEA and other analysis calculations. The influence of the strain rate on the yield 

strength of steel is described by the Cowper-Symonds model [35], as shown in 

Eq. (1): 
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where  dy  represents the yield strength of the steel tube under the strain rate 

 ;  sy  represents the yield strength of a steel tube; and C and P are the strain 

rate parameters with values 6844 s-1 and 3.91, respectively [1,10].  

The influence of the strain rate on the dynamic compressive strength of 

concrete can be found in the CEB-FIP model code [36], as shown in Eq. (2):  
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where cdf  represents the dynamic compressive strength of concrete at the 

strain rate   within the range of 
6 -130 10− s  to 

1300 −s ; csf  represents the 

static compressive strength of concrete at the strain rate  sc  (
6 130 10 − −= sc s );

log 6.156 2 = −s s ; 10=cof MPa ; 1(5 9 / ) −= +s cs cof f . 

The influence of the strain rate on the dynamic tensile strength of concrete 

is also given in the CEB-FIP model code [36], as shown in Eq. (3): 
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where tdf  is the dynamic tensile strength of concrete at the strain rate   

within the range of 
6 -130 10− s  to 

1300 −s ; tsf  is the static tensile strength of 

concrete at the strain rate  st  (
6 13 10 − −= st s ); log 7.11 2.33 = −s s  ; and 

1/ (10 6 / ) = +s cs cof f . 

Both the impact hammer and supports are simplified in the FEA model, as 

shown in Fig. 2. Specifically, the supports are simplified to hollow cylinders 

with all degrees of freedom constrained, while the impactor is simplified as a 

rectangular block. The impact contact surface size and the total mass of the 

impact block in the FEA model are the same as those in the tests. Both the 

support and the impact block are rigid bodies, corresponding to the MAT_15 

model in LS-DYNA. 

The parameters of the CFST beams are consistent with those of the tests. A 

continuous node mode is used to describe the contact relationship between the 
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concrete and the steel tube, while their relative slip is not considered in the FEA 

model. Automatic node-to-surface contact is adopted as the contact relationship 

of the CFST beam and the supports as well as between the CFST member and 

the block, for which the dynamic friction coefficients are 0.2 and 0, respectively. 

Additionally, the penalty scale factors, SFS and SFM, are equal to 2.0. The 

initial impact velocities of the impactor were determined according to the tests. 

Besides, a stiffness-type hourglass control was used to eliminate the zero-energy 

modes.  

 

2.2.2 Verification of the FEA model 

Fig. 3 shows the general FEA result. The dynamic response modes of the 

CFST beams were bending deformation and fracture, with reasonable CFST 

beam damage and deformation being obtained via the establishment FEA model. 

The impact-force time history curves obtained from the FEAs are shown in 

Fig. 4. The comparisons between the predicted and experimental peak values 

( maxP ), plateau values ( stableP ) and load durations (t) of the impact forces (F) 

are shown in Table 2. The subscripts FE and TE in Table 2 refer to the FEA and 

the experimental results, respectively. The mean values of max, max,/FE TEP P , 

, ,/stable FE stable TEP P  and /FE TEt t  ratios are 0.97, 1.05 and 1.01, respectively, and 

the corresponding standard deviations are 0.049, 0.037, and 0.061. The 

maximum deflections of the impact point ( maxbW ) obtained from the FEAs and 

the tests are also summarised in Table 2. The mean value and standard deviation 

of the max, max,/b FE b TEW W  ratio are 1.01 and 0.054, respectively. Therefore, the 

results of the dynamic response of CFST beams obtained from the FEAs are 

consistent with those from the 2/9 span tests. 

 

 

(a) Test Result 

 

(b) FEA Result 

Fig. 3 Damage condition 

Table 2 

Summary of the FE simulation results 

Specimen 
 Pmax (kN)  Pstable (kN)  Wbmax (mm)  Total duration t (ms) 

 FEA TEST FE/TE  FEA TEST FE/TE  FEA TEST FE/TE  FEA TEST FE/TE 

YG1  370.3 410.9 0.90  210.6 193.8 1.09  30.9 32.2 0.96  14.0 13.3 1.05 

YG2  469.0 449.6 1.04  193.2 186.1 1.07  93.7 91.4 1.03  44.4 42.5 1.04 

YG3  529.3 527.1 1.00  199.2 201.6 0.96   Fracture    Fracture  

YG4  619.4 651.2 0.95  312.4 286.8 1.09  49.5 49.5 1.00  12.6 13.1 0.96 

YG5  517.3 542.6 0.95  309.3 294.6 1.05  35.5 33.3 1.06  11.3 11.7 0.97 

                 

Mean Error    0.97    1.05    1.01    1.01 

Std. Dev.    0.049    0.037    0.054    0.061 
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(c) YG3                                (b) YG4 
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(e) YG5 

Fig. 4 Impact-force time history curves 
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(a) Impact force 
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(b) Stress distribution 

Fig. 5 Stress distribution during the peak value stage 
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2.3. Deformation mode 

 

Fig. 5 shows the propagation process of stress waves at the peak value stage, 

which is applied to analyse the force mechanism of CFST members. From the 

Von-Mises stress distributions of the beam (YG3), there are two deformation 

modes for CFST beams at the peak value stage which are the local compression 

mode and the local bending deformation mode. 

The local compression stage is shown in Fig. 5 (b-1). At this stage, the stress 

wave propagated from the top to the bottom point, and the stress value at the 

bottom point of the CFST member was always zero. From this phenomenon, it 

is considered that the bottom of the CFST member cross-section remains 

stationary, and the whole deformation of the cross-section does not occur. 

Therefore, only local compressive deformation occurs in CFST members at this 

stage. After the stress wave spreads to the bottom of the CFST beam, the 

member cross-section exhibits the bending deformation. 

The bending deformation stage is shown in Fig. 5 (b-2) to (b-4). The main 

feature of this stage is that there are two travelling stress-concentrated regions 

(i.e., travelling hinges) outside the impact point. The middle of the stress-

concentrated region displayed a low-stress level, while the top and bottom of 

the region displayed high- stress levels; which is a typical bending stress 

distribution. Therefore, it was determined that the deformation mode of the 

CFST beam is a bending mode. The stress distribution also proved that the 

deformation of the CFST beam is local since there were stress-less regions 

between the supports and the stress-concentrated regions. The stress-

concentrated regions gradually extended from the impact area to the constraints, 

as shown in Fig. 5 (b-2) to (b-4), a process that can be described by the travelling 

hinge theory [14-16, 37]. The stress-concentrated region is similar to the 

travelling hinge, with the stress level of the travelling hinge increasing during 

its travelling process, resulting in it eventually reaching a plastic state from an 

elastic state, as seen in Fig. 5 (b-4). Thus, the elastoplastic behaviour of CFST 

beams is an additional factor that requires consideration in analysis calculations.  

 

2.4. Velocity and acceleration 

 

Fig. 6 displays the velocity time history and acceleration time history 

curves for the YG3 case, with bW , bV  and ba  as the displacement, velocity 

and acceleration variables of the CFST member at the impact point, respectively. 

Additionally,. IW , IV  and Ia  are the displacement, velocity and acceleration 

variables of the impactor, respectively. The above parameters are also marked 

in Fig. 6 (c). 

The impact velocity (Velocity) versus time (Time) curves are showed in 

Fig. 6(a), including IV  and bV . From the IV  curve, the velocity of the 

impactor decreases continuously at the peak value stage which indicates that the 

impactor is always in the state of deceleration. In contrast, the bV  curve 

witnesses an increase during the initial period, which indicates that the CFST 

beam is in the state of acceleration, then it falls gradually. Thus, the peak value 

stage can be further divided into the acceleration process (OLV) and the 

deceleration process (after point V) based on the state of the CFST beam. The 

demarcation point of the two processes is represented by point V, as shown in 

Fig. 6 (a). From the bV  curve, It is also observed the fact that the acceleration 

process is characterized by the approximate linear increment. Based on this 

feature, it can be assumed that the value of ab is approximately a constant during 

the acceleration process. Besides, as the bV  and IV  curves stay close and 

share the similar trend in the deceleration process, it can be assumed that 

I bV V  in this process, which is also a general supplementary condition in the 

analysis calculations [15-16, 27-30], while not suitable at the peak value stage. 

The supplementary condition of the acceleration process is suggested to be 

the simplified acceleration time history curve (i.e., the simplified trend curve), 

as shown in Fig. 7. The simplified trend curve in the acceleration process can 

be divided into three stages in which: OL represents the local compression stage, 

LV indicates the constant acceleration stage of bending deformation, and VA 

denotes the transition stage. Point O is the initial time of the impact process; 

point L is defined as the end time of the local compression process; point V is 

the time when =I bV V  for the first time (although I ba a  at this time), and 

point A is the time when I bV V  ( =I bV V  and =I ba a ). The constant 

acceleration stage is the main component of the simplified trend curve, 

corresponding to the linear change process of the bV  curve. The function of the 

local compression stage is to determine the parameters of the simplified curve. 

Since the CFST beam was already in the constant acceleration state when the 

local compression stage ended (L moment) (Fig. 6 [a] and [b]), time and the 

value of ba  at the L moment were used as the representative values to 

determine the curve. Finally, the transition stage was applied to ensure that 

I bV V  at A time. Point V and point A were determined by the relative motion 

states of the impactor and CFST beam. 

The ideal simplified trend curve and the corresponding velocity time 

history curve are also displayed in Fig. 6(a) and (b). Compared with the FEA 

result ( ba  FEA), although the trend of the simplified curve at the VA stage is 

slightly different from that of the FEA result, the general trends of the two 

curves in the acceleration process appear to be similar. 
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Fig. 6 Velocity and acceleration 
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Fig. 7 Simplified acceleration curve 

 

3.  Analysis method of the peak value stage 

 

3.1. Analysis process 

 

There are two stages in the analysis and calculation process: local 

compression stage and bending deformation stage. The calculation of the local 

compression stage was performed to predict the parameters of the simplified 

trend curve (prediction model), as shown in Figure 7. Then, the bending 

deformation stage could be calculated based on the travelling hinge theorem, 

wherein the prediction model provides the supplementary condition for solving 

the equations.  

 

 

Fig. 8 Calculation process 

 

The calculation process was divided into four stages according to the 

proposed prediction model, as shown in Fig. 8. 

Step 1: Local compression stage calculation. 

Step 2: Prediction model parameter identification. 

Step 3: Bending deformation calculation at the peak value stage (based on 

the prediction model). 
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Step 4: Bending deformation calculation after the peak value stage (based 

on the I bV V  assumption). 

On the basis of the prediction model, Step 3 can also be subdivided into the 

constant acceleration stage (Step 3.1) and the transition stage (Step 3.2). 

 

3.2. Prediction of the acceleration curve 

 

3.2.1 Calculation of the local compression process 

The parameters of the prediction model were determined by the value of 

ba  ( bLa ) and time ( Lt ) at the end of the local compression stage. Therefore, 

the ba  curve of the peak value stage could be predicted by the calculation of 

the local compression stage.  

The propagation process of the impact at the local compression stage (OL) 

is shown in Fig. 9, which shows that the stress wave propagates from the contact 

point (CP) to the bottom of the beam (BP), and before it reaches point BP, the 

bottom of the beam is in a static and stress-less state. Thus, it can be concluded 

that the beam cannot generate bending deformation, and the local compression 

model is recommended for calculation during this process. 

 

 

Fig. 9 Local compression model 

 

(a) Cross-section 

          

(b) Contact area                       (c) Contact force 

Fig. 10 Calculation of the local compression process 

 

Fig. 10 displays the calculation model of the local compression stage. The 

contact force is assumed to be controlled by the core concrete material, as shown 

in Fig. 10 (c). The force balance equation between steel and concrete was 

established, as given in contact mechanics [38]:  

 

0+   =I cc Cma DIF f A  (4) 

 

where CA  is the contact area; ccf  is the concrete strength with consideration 

to the lateral confining pressure; DIF is the dynamic increase factor of the 

concrete material given in the CEB90 model code[36].  

The value of ccf  [39,40] is calculated by Eq.(5): 

 

3= +cc cf f k  (5) 

 

where cf  is the characteristic concrete strength, taken as 0.67 of the cubic 

strength of concrete for normal-strength concrete [1,10]; k  is an empirical 

coefficient [39,40]; and 3  is the confining pressure around the concrete core, 

which can be estimated according to the local transverse strain of the concrete. 

 

3 3 = c cE f  (6) 

 

where cE  is the elastic modulus of concrete; 3  is the transverse strain of 

concrete at the impact point region; the transverse direction is the axial direction 

of the beam. The value of 3  can be calculated by the definition of Poisson's 

ratio, as shown in Eq. (7): 

 

3

c3





=  (7) 

 

where   represents Poisson’s ratio and 3 c  is the local compressive strain of 

concrete. The value of 3 c  is conservatively estimated by Eq. (8). 

 

3

( 2 )



=

−

I
c

b

W

D T
 (8) 

 

where D is the diameter of the beam; Tb is the thickness of the steel tube; IW  

is the displacement of the impactor. Additionally,   is the stress distribution 

coefficient with a suggested value of 0.71.  

2− bD T  in Eq. (8) is a conservative approximation of SAD . SAD  is the 

height of the stress area, as shown in Fig. 10 (a), and   is the coefficient 

related to the stress distribution. From Fig. 9, the shape of the stress distribution 

in CFST members is approximately semi-circular. Thus, the impact point region 

with width b is subjected to the transverse constraint of the surrounding concrete. 

Moreover, the transverse constraint level of concrete at different section heights 

is not the same. If the effect of transverse constraint is ignored, 1 = . When 

considering this effect, a reference point (i.e., point RP) can be used to estimate 

the average influence of the transverse constraint. The recommended point RP 

is the intersection point between the 45° line and the stress area edge, as shown 

in Fig. 9. Thus, the value of   is 0.71 ( sin 45O

). Additionally, the initial state 

of the bending deformation stage can also be obtained from the point RP. A 

rectangular stress area determined by the reference point can be equivalent to 

the semi-circular stress area, as seen in Fig. 9. 

Then, the local compression strain rate (  ) used to estimate the DIF can 

also be calculated by Eq. (9). 

 

( 2 )



 =

−

I

b

V

D T
 (9) 

 

where IV  is the velocity of the impactor.  

Besides, CA  is the contact area, and its value is calculated by Eq. (10): 

 

=C CA L b  (10) 

 

where b  is the width of the hammer; CL  is the contact length displayed in 

Fig. 10(b). For circular cross-sections, CL  is calculated based on geometric 

relationships [38]: 

 

2=C IL W D  (11) 

 

3.2.2 Termination time of local compression stage 

The local compression stage was terminated when the stress wave reached 

point BP. It was assumed that SAD  in Fig. 10(a) represented the maximum 

vertical distance between the stress area and the contact point. Thus, when 

=SAD D , the local compression stage was terminated. At the time of =SAD D , 

the vertical propagation distances of the stress wave in the steel and concrete 

are 2 bT  and 2− bD T , respectively. Therefore, according to the formula for the 

elastic stress wave velocity [41], the termination time of the local compression 

stage ( Lt ) can be estimated as: 

 

2 2

/ / 

−
= +

b b
L

s s c c

T D T
t

E E
 (12) 

 

where sE  and cE  are the elastic modulus values of steel and concrete, 

respectively;  s  and  c  are the densities of steel and concrete, respectively. 

3.2.3 Acceleration prediction 

The stress area (SA) of the CFST member at time L (i.e., the termination 

time of the local compression stage) is shown in Fig. 9. According to the 

reference point (RP), the empirical acceleration distribution is shown in Fig. 11. 

In this empirical distribution, the acceleration value of the impact point region 
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with width b is ba , and the position of zero acceleration point is 0.71D away 

from the boundary of the impact point region. It is assumed that the acceleration 

distribution is linear between the zero acceleration point and the edge of the 

impact point area.  

 

 

Fig. 11 The initial distribution of the acceleration during the bending stage 

 

Therefore, the acceleration value of the beam impact point at time L ( bLa ) 

is calculated as follows: 

 

( 0.71 )
= −

+

I L
bL

l

ma
a

b D
 (13) 

 

where l  is the beam mass per unit length; ILa  is the acceleration of the 

impactor at time L obtained from Eq. (4). 

Furthermore, the velocity of the beam impact point ( bLV ) at time L was 

obtained by momentum conservation: 

 

0( )

( 0.71 )

−
=

+

I IL
bL

l

m V V
V

b D
 (14) 

 

where ILV  is the velocity of the impactor at time L obtained from Eq. (4). 

The average deflection of the beam impact point at time L ( bLW ) can be 

calculated using Eq. (15). 

 

0.5=bL bL LW V t  (15) 

 

In Eq. (13), ba  is a positive value, indicating that the velocity of the 

member gradually increases, whereas Ia  is always negative, indicating that 

the impactor velocity continues to decrease. 

 

3.3. Bending stage calculation 

 

3.3.1 Bending equilibrium equation 

The diagram used in the calculation of the impact process based on the 

travelling hinge model is shown in Fig. 6(c), in which F' and N' represent the 

travelling hinges. When a travelling hinge reaches the supported end of the 

beam, it immediately transforms into a stationary hinge. Equations for the 

travelling hinge model based on the assumption that I bV V  has been provided 

in the literature [15,16,37]. If the impactor and the member are independent, the 

original equation can be altered to Eqs. (16)-(18). 

 

1 1
+ ( )+ ( ) 0

2 2
      + + + + =I l b F N l b F N F Nma a V Q Q  (16) 

 
2

+
6 3

    



= + +

l b F l b F F
F I F F

a V
M M Q  (17) 

 

2

+
6 3

    



= + +

l b N l b N N
N I N N

a V
M M Q  (18) 

 

where  F  and N  represent the location of the travelling hinges;  N  and 

 F  represent the corresponding travelling hinge velocities; IM  is the 

bending moment value of the stationary hinge at impact point I; NM  and FM  

are the bending moment values of the corresponding travelling hinges; NQ  and 

FQ  are the shear force values of hinges N and F, respectively; and the 

subscripts F  and N  represent the supports corresponding to the travelling 

hinges F' and N'. 

NL  and FL  denote the distance from impact point I to the supports N and 

F, respectively. Before a travelling hinges reaches the support (  N NL  or 

 F FL ), the travelling hinge shear force is ignorable ( 0=NQ  or 0=FQ ); 

however, the travelling hinge velocity is not zero ( 0  N  or 0  F ). 

Conversely, if  =N NL  or  =F FL , ( ) 0N FQ  and ( ) 0  =N F . 

 

3.3.2 Elastoplasticity of a travelling hinge 

As steel and concrete are both elastic-plastic materials, the travelling hinge 

of a CFST beam is not rigid-plastic. Eqs. (19) and (20) illustrate an 

approximation method for estimating the elastoplastic deformation of a 

travelling hinge: 

 

= = N I N yM M K M  (19) 

 
= F F yM K M  (20) 

 

 =N b NW  (21) 

 

 =F b FW  (22) 

 

where yM  is the dynamic yield bending moment of the beam; N  and F  

are the rotation angles of the travelling hinges; and K  is the dynamic 

rotational stiffness.  

 

 = K DIF K  (23) 

 
where DIF  is the dynamic increase factor related to the rotational velocity of 

the hinge, and K  is the static rotational stiffness calculated as follows: 

 


 =

p

K
K

l
 (24) 

 
where K  is the flexural rigidity of a CFST beam according to the AIJ1997 

code [42], and pl  is the equivalent length of the hinge region with a value of 

0.5D . 

 

0.2 = +S S C CK E I E I  (25) 

 
where, SI  and CI  are the inertia moments of the steel tube and core concrete 

sections, respectively. 

Eqs. (19) and (20) are optimisations of the = = =N I F yM M M M  

assumption (i.e., the rigid-plastic model). The =N IM M  assumption is based 

on both the 2/9 span tests and FEA results, as shown in Fig. 3 and Fig. 5. Similar 

estimation methods of the   value can also be found in the calculation of Qu 

[27].   

Since the steel tube provides the main flexural capacity, DIF  is 

estimated as follows:  

 

1

1 ( )


= + PDIF

C
 (26) 

 
where C and P are the strain rate parameters: C=6844 and P=3.91[1,7]. 

Additionally,   is the rate of the rotation angle [23]. 

 




 =
b

N

V
 (27) 

 
Then, the dynamic yield bending moment of the beam ( yM ) can be 

calculated as follows: 

 

=  s
y uM DIF M  (28) 

 
where 

s
uM  is the static yield bending moment of the beam that can be 

calculated by the formula presented by Han [43]. 

 

3.3.3 Calculation of bending stage 

(1) Step 3.1 
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The unknown variables of the three equilibrium equations (16)-(18) include 

IW , bW ,  F  and N . The prediction model provided the acceleration value 

of the beam ( ba ) to determine its deflection ( bW ). Thus, the equations can be 

solved. 

The initial travelling hinge position ( 0 ) is shown in Figs. 9 and 11.  

 

0 0.71 = D  (29) 

 
The supplementary condition for the equilibrium equations is as follows: 

 

( ) =b bLa t a  (30) 

 
The calculation process begins at time L (i.e., the termination time of the 

local compression stage), and the termination condition of the calculation 

process is the first occurrence of =I bV V . 

(2) Step 3.2 

The transition stage (VA) in the prediction model is shown in Fig. 7, with 

the times corresponding to point V and point A being equal. During the 

calculation, the basic assumption is =I ba a , and the parameters other than NQ , 

FQ ,  N  and  F  maintain their values at V time. By introducing =I ba a  

into Eqs. (16)-(18), the acceleration value corresponding to point A can be 

obtained. 

(3) Step4 

The deformation mode of the beam after the peak value stage is also a 

bending-type. Hence, Eqs. (16)-(18) can still be applied for the calculation of 

this stage. However, the supplementary condition changes from the prediction 

model to the equation I bV V .  

 

3.4. Analysis Results 

 

The dynamic response of the CFST beam at the peak value stage under 

lateral impact was predicted using the proposed analysis method, and the 

accuracy of which was then verified by the 2/9 span tests employed in this study 

and five other 1/2 span tests [1,10]. The rationality of the calculated results was 

evaluated by the acceleration and impact-force time history curves. 

 

3.4.1 Acceleration time history curve 

Fig. 12 presents the acceleration time history curve at the impact point I 

obtained from the prediction model. The calculated acceleration value of the 

beam in the constant acceleration stage was ,b LVa , and the results are 

summarized in the table of Fig. 12. The corresponding average value of FEA 

was assigned as ,b FEAmeana . As shown in the table of Fig. 12, the mean value of 

the , ,/b LV b FEAmeana a  ratio was 0.987, and its standard deviation was 0.0504. The 

maximum calculation error appeared in the YG1 case, for which the value of 

the , ,/b LV b FEAmeana a  ratio was 0.899. This error also led to a low calculated 

value of impact force in the YG1 case. 

The shortcomings of the prediction model can be observed clearly in Fig. 

12. The FEA results show that the impact point acceleration of the CFST beam 

decreases after the constant acceleration stage (point V), and gradually 

approaches the acceleration value of the impactor. However, the prediction 

model (VA) assumes that this process is completed immediately. The calculation 

error in the acceleration at this stage is evident, and its influence was discussed 

in the following section according to the impact-force time history curves.  
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(c) YG3                           (d) YG4 

 

0.0000 0.0001 0.0002 0.0003 0.0004
-10

0

10

20

30

40

50

A

V

FEA mean

A
cc

el
er

at
io

n
(m

m
/m

s2
)

Time(s)

 ab FEA  aI  FEA  Prediction

     

(e) YG5                         (f) Summary 

Fig. 12 Calculation results of prediction models 

Table 3 

Details of the analysis calculations 

Specimen 
m VI0 D Tb fc k[39,40] 

Ec fy My Impact 

point 

Pmax,TH Pmax,TE 
∣1-TH/TE∣ 

(kg) (m/s) (mm) (mm) (MPa) (MPa) (MPa) (kN·m) (kN) (kN) 

YG1 270 7.67 114 2 36.85 4.1 35250 338 9.63  2/9span 364.3 410.9 11.33% 

YG2 270 9.90 114 2 36.85 4.1 35250 338 9.63  2/9span 436.4 449.6 2.93% 

YG3 270 11.7 114 2 36.85 4.1 35250 338 9.63  2/9span 498.4 527.1 5.44% 

YG4 270 11.7 114 3.5 36.85 4.1 35250 323 15.36  2/9span 636.3 651.2 2.28% 

YG5 270 9.90 114 3.5 36.85 4.1 35250 323 15.36  2/9span 565.3 542.6 4.18% 

CC1[1] 465 9.21 180 3.65 50.32 3 36800 247 35.26  1/2span 870.0 811.1 7.27% 

CC2[1] 920 6.40 180 3.65 50.32 3 36800 247 35.26  1/2span 666.3 624.8 6.65% 

CC3[1] 465 9.67 180 3.65 50.32 3 36800 247 35.26  1/2span 901.9 787.9 14.47% 

DBF14[10] 230 3.90 114 1.7 32.63 4.1 32500 232 6.11  1/2span 148.2 160.5 7.66% 

DBF17[10] 230 4.40 114 1.7 32.63 4.1 32500 232 6.11  1/2span 175.5 168.5 4.18% 

              
Mean Error             6.64% 

Std. Dev.             0.035 

 

 

 

3.4.2 Impact-force time history curve 

The impact-force time history curves of the 2/9 span tests obtained from 

the analysis method are shown in Fig. 13. The calculation parameters and results 

of the 1/2-span cases are summarized in Table 3.  
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Compared with the impact force peak values from the verification tests 

( max,TEP ), the mean error of the analysis calculation ( max,THP ) was 6.64%, and 

the standard deviation was 0.035. One of the cases exhibiting a larger error was 

YG1, in which the calculation value was 11.33% lower than the experimental 

value. The reason for this error may be that the influence of the steel tube was 

not considered in determining the parameters of the prediction model in Eq. (4). 

Therefore, the calculated results of beam acceleration ( ba ) and the impact force 

were lower than those of the test. In addition, the greatest calculation error 

occurred in the case of CC3, in which the calculated value was 14.47% higher 

than the test value. A particular case led to this deviation, which involved the 

impact force peak values of the tests decreasing with rising impact velocity, as 

seen in CC1 and CC3. Although the theoretical method cannot reasonably 

describe this phenomenon, it can be inferred that it may be related to local 

damage of the CFST beam. Additionally, it can be further found from the 

impact-force time history curves that the VA process in the prediction model is 

acceptable, as shown in Fig. 13. This approximation method does not yield 

significant errors in the calculation results. 

After the A time in Fig. 13, the impact-force platform value can be 

calculated based on the I bV V  assumption, and the calculation results 

consistent with the tests were obtained from the original travelling hinge 

theorem. However, since the I bV V  assumption was employed, the 

fluctuations of the impact force curves could not be described. The calculation 

process employed in this paper terminated after all the travelling hinges 

transformed into stationary hinges ( =F FL ). It can be found from the curves 

after A time that the actual constraint length of the CFST beam at the early 

platform stage may be less than the distance from the impact point to the 

supports. 
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Fig. 13 Analysis calculation results 

 

4.  Conclusion 

 

In this paper, an analysis method was presented to predict the dynamic 

response of CFST beams under the lateral impact process at the peak value stage. 

The rationality of the method was verified by the acceleration time history curve 

of FEAs and the impact-force time history curve of lateral impact tests. The 

following conclusions were obtained from the research of this paper. 

(1) A simplified trend curve of the acceleration at the impact point of a 

CFST beam is proposed based on the FEA results. The curve can be a new 

supplementary solution condition in the calculation of the peak value stage. The 

simplified trend curve divides the peak value stage into the local compression 

stage, the constant acceleration bending stage, and the transition stage.  

(2) The parameters of the simplified trend curve can be predicted by the 

calculation of the local compression stage. The influencing factors of the 

prediction model include impactor mass, impactor velocity, contact surface size, 

and concrete strength and strain rate.  

(3) The dynamic responses of CFST beams at the peak value stage were 

accurately predicted. This analysis calculation depended on the prediction 

model of the simplified trend curve and the travelling hinge theorem. The 

elastoplastic behaviour of CFST beams was also considered during the 

calculation.  

Based on the proposed simplified trend curve and the travelling hinge 

theorem, a dynamic response analysis method for the peak value stage of CFST 

beams under lateral impact can be established. This method provided the 

predictions for the dynamic response of CFST beams reasonably. However, the 

transition stage in the simplified trend curve is marginally different from the 

FEA results, and the current work cannot simplify this stage more accurately. 

Therefore, more research is needed to further optimise the simplified trend 

curve. 
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Notation 

 

ILa  
Acceleration value of the impactor 

at time L Ia  
Acceleration of the im-

pactor 

ILV  Velocity of the impactor at time L. IV  Velocity of impactor 

Lt  
Termination time of the local com-

pression stage IW  
Displacement of im-

pactor 

bLa  
Acceleration value of the beam at 

time L ba  
Acceleration of the beam 

impact point 

bLV  
Velocity of the beam impact point at 

time L bV  
Velocity of the beam im-

pact point 

bLW  
Deflection of the beam impact point 

at time L bW  
Displacement of the 

beam impact point 

3  
Confining pressure around the con-

crete core 
  Poisson’s ratio 

3  
Average transverse strain of con-

crete CA  Contact area 

c3  Compressive strain of concrete D  Diameter of the beam 

fc Characteristic concrete strength bT  
Thickness of the steel 

tube 

  local compression strain rate b  Width of the hammer 

  Stress distribution coefficient cE  
Elastic modulus of con-

crete 

k  Empirical coefficient sE  Elastic modulus of steel 

yM  
Dynamic yield bending moment of 

the beam 
 c  Density of concrete 

IM  
Bending moment value at impact 

point I 
 s  Density of steel 

NM  
Bending moment values of the 

travelling hinge N CL  Contact length 

FM  
Bending moment values of the 

travelling hinge F 
l  

Beam quality per unit 

length 

s
uM  

Static yield bending moment of the 

CFST beam 
N  

Location of the 

travelling hinge N 

N  
Rotation angles of the travelling 

hinge N 
 F  

Location of the travel-

ling hinge F 

F  
Rotation angles of the travelling 

hinge F  N  
Velocity of the travelling 

hinge N 

NL  
Distances from impact point I to the 

support N  F  
Velocity of the travelling 

hinge F 

FL  
Distances from impact point I to the 

support F 
0  

Initial travelling hinge 

position 

K  Flexural rigidity of CFST members FQ  
Shear force values of 

hinge F 

K  Static rotational stiffness NQ  
Shear force values of 

hinge N 

K  Dynamic rotational stiffness C  Strain rate parameter 

SI  Inertia moment of steel tube section P  Strain rate parameter 

CI  
Inertia moment of core concrete 

section 
pl  Equivalent length of the 

hinge region 

ccf  
Concrete strength in consideration 

of lateral confining pressure 
DIF  

Dynamic increase factor 

of concrete 

DIF  Dynamic increase factor related to the rotational velocity of the hinge 
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