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A B S T R A C T  ARTICLE HISTORY 

 

Slender steel sections are widely used in the construction of steel structures such as lattice structures for transmission li ne 

and telecommunication towers. Local buckling may be the observed failure mode under compression loads for these slender 

sections, and many experimental studies have been conducted to evaluate their resistance. All steel design codes include 

equations to account for local buckling. In numerical models, local buckling can be reproduced using 2D shell or 3D 

elements. Nonlinear numerical models have been developed in the last decades that can capture the complex behavior of 

lattice structures up to failure. These models typically use beam elements that consider correctly the global buckling and 

yielding of sections but do not consider the local buckling of angles due to geometrical limitations. This article proposes a 

method that modifies the material behavior of sections to involve the local buckling failure in the analysis. Forty -two 

experimental tests were conducted on short angles and a general stress-strain formula was defined based on the test results. 

The formula relates the local buckling slenderness ratio of the members to a material constitutive law that accounts for the 

local buckling. To evaluate the method, the numerical results were compared to those of four x-braced frame configurations 

using slender angle sections. The results demonstrate that the proposed method can accurately model the local buckling 

failure of fiber beam elements.  
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1.  Introduction 

Angle steel members are widely used in steel lattice structures for 

transmission lines and telecommunications. Lattice towers that are made of 

angle members exhibit complex structural behavior, which is mainly due to 

connection eccentricity, bolt slippage, local buckling and their impacts on 

failure modes. The standard procedure for designing tower members is to 

build a simple linear model of the structure for determining the forces in each 

member and to evaluate the resistance using design code equations. This type 

of analysis may not be correct because the buckling resistance should be 

verified as an integrated part of the design and not as an independent stage 

[1, 2]. To overcome the limitations of this simple analysis, transmission line 

lattice towers are typically tested under various load conditions in full-scale 

field tests prior to mass production.  

Prasad Rao [3] reported that 32 towers out of 138 full-scale tests at the 

Structural Engineering Research Centre [CSIR-SERC] experienced various 

types of premature failures, which demonstrates the limitations of the design 

method that is used in practice. To study the failure in detail, they modeled 

three towers and analyzed them using the NE-Nastran nonlinear finite 

element software. The option for geometric and material nonlinearity in the 

software was used to obtain the behavior and limit loads. The entire tower 

was modeled using beam-column elements. However, to capture more details, 

the failed compression bracings were modeled as plate elements. The test 

failure pattern coincided with the analysis failure pattern for both beam and 

plate modeling. However, nonlinear finite element analysis predicted a failure 

load that was 7 to 14 percent higher than the test results. 

Another study was performed by the same researchers [4] on five 

prematurely failed towers. They encountered overprediction of the strength 

by nonlinear analysis and concluded that finite element analysis is still not a 

fully reliable method for predicting tower strength and the tests remain 

necessary for this objective. However, it is indicated that the nonlinear 

analysis is essential for understanding the behavior, load carrying capacity, 

design deficiencies, and instability in the structure. This type of nonlinear 

model aims at capturing the complex and nonlinear behavior of steel lattice 

structures. It is not a practical design method because it does not rely on 

design code equations or more advanced methods such as the direct strength 

method (DSM) [5, 6, 7] to evaluate the resistance of sections. It provides a 

one-step numerical model for representing the pre- and post-buckling 

behaviors of the structure. This type of model is useful as an alternative or 

complement to full-scale tests for understanding the behavior and evaluating 

the resistance of lattice towers. Recent works showed that depending on the 

objective of the modeling, the following characteristics of lattice behavior 

might need to be considered: joint eccentricity [8, 9], bolt slippage [10], and 

residual stresses [11], among others. However, in this type of model, which 

normally simulates the elastoplastic buckling of angle members, the potential 

local buckling of members is neglected. This article will focus on developing 

an efficient method to account for local buckling in nonlinear models of 

lattice structures. 

Currently, most research on the modeling of angle members uses either 

beam elements or 2D shell elements. Angle sections may undergo global or 

local buckling instability under a compression load, depending on the 

slenderness and the width-to-thickness ratios. Shell elements can represent 

the full three-dimensional behavior of angle sections and local buckling with 

high accuracy if the mesh is sufficiently refined. However, for large and 

complex structures such as lattice towers, the high number of members render 

the use of shell elements impractical. For example, Shan et al. [12], proposed 

modeling angle members by nonlinear plate elements. They included both 

material and geometric nonlinearities in the study; however, the analysis 

procedure was computation-intensive and time-consuming. They concluded 

that 2D elements can only be used for small structures and as a research tool. 

This conclusion has been supported by other researchers [13].  

In slender angle sections with a high width-to-thickness ratio, the global 

buckling deformation is accompanied by local buckling of leg plates [14] and 

this effect should be incorporated into the finite element model of the 

structure. Lee and McClure [13] developed an L-section beam finite element 

for elastoplastic large deformation analysis. In terms of the computational 

time, the beam element is 2.4 times more efficient than shell modeling if the 

member length is equal to 4 meters. 

The fiber beam element is a highly effective element that is used with 

success to model angle sections. This element can properly incorporate the 

stress and yielding effects in the member. Kitipornchai et al. [19, 20] reported 

an analysis with nonlinear fiber elements of angle sections under axial and 

bending loads. Numerical studies were conducted on various structures and 

the angle members were modeled as fiber elements. Several examples were 

presented to demonstrate the satisfactory performance of the fiber element 

model in predicting the ultimate behavior of imperfect angle columns. The 

results that were obtained from the study were compared to experimental tests 

on two pairs of angle trusses with web members. 

Vieira et al. [21] and Carrera et al. [22] proposed a 1D beam element for 

modeling the buckling of beams using analytical formulas. The results 

accorded with finite element models. Several limitations in capturing the local 

buckling behavior were reported. According to the authors, additional tests 

and experiments are needed for extending the method. 
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Other computational methods for calculating the buckling loads of thin-

walled sections were studied. Huang et al. [23] developed a mathematical 

formulation. They considered the angle section as an example and conducted 

a numerical analysis of the elastic and inelastic buckling using finite element 

models. The results from beam and shell elements were compared with the 

theoretical results. It was concluded that the mathematical solution of higher 

order differential equations is complicated and for members with complicated 

deflections another method should be applied. 

Considering other research and experiments in this field, the approach with 

fiber elements is well adapted analytically for modeling the transmission 

tower structures; however, a full local buckling behavior that covers the pre- 

and post-buckling behaviors is not well defined. 

The objective of this paper is to propose a method for incorporating the 

local buckling behavior in the finite element model of structures using fiber 

beam elements by developing a stress-strain behavior curve of steel. Forty-

two slender section angle members were tested and full force-deflection 

curves were extracted. Then, a local buckling slenderness ratio was defined 

via the direct strength method [5] and equations were developed to relate the 

slenderness ratio to two specified points on the stress-strain curve. 

Considering these two points, full stress-strain equations were defined by 

using curve fitting techniques to model the compressive behavior of a slender 

angle with a specified slenderness ratio. Finally, the proposed method was 

evaluated by comparing its results to the test results on four full-scale X-

braced frames of angle slender members that were obtained by Morissette 

[24]. 

2. Short angle specimens 

2.1. Local buckling slenderness 

The experimental program consists of testing 42 short angle members 

under pure compression. These tests were conducted to evaluate the global 

stress-strain behavior of angles that are failing due to local buckling. To 

characterize the sections that are undergoing local buckling, Table 1 

introduces the local buckling slenderness ratio, which is denoted as 𝜆𝑝 and is 

defined in Equation 1. This ratio is used in the direct strength method [31] 

and was found to be useful for relating the properties of the angle to the stress-

strain behavior. 

𝜆𝑝 =  √
𝐹𝑦

𝜎𝑐𝑟
  (1) 

In this equation, 𝐹𝑦 stands for the yielding stress of steel and 𝜎𝑐𝑟  is the 

critical elastic local buckling stress for the member, which can be calculated 

using finite element software such as Code_Aster, ANSYS or ABAQUS. In 

this study, a finite strip software, namely, CUFSM, which is developed by 

Schafer [32], will be used to perform critical elastic buckling load calculations. 

CUFSM, which has been developed to accompany the direct strength method, 

is a finite strip elastic buckling analysis application. In the first step, the 

geometry of the member is modeled either manually or using a built-in cross-

section library. Then, general end boundary conditions and loading are 

applied to the member and the section is meshed automatically with finite 

strips. Finally, the analysis provides the buckling mode shapes of the member 

and the critical elastic buckling load for each mode. This software is freely 

available. 

In practice, FE analysis is time-consuming for engineers. However, as a 

simplification, a mathematical relation can be developed between the local 

buckling stress and the width-to-thickness ratio b/t, where b is the width of 

the angle leg and t is the thickness of the leg. Based on all the angle members 

that are reported in Table 1, a formula is presented that relates 𝜎𝑐𝑟 and ratio 

(b/t): 

  

 (
𝑏

𝑡
) =  

𝛼

√𝜎𝑐𝑟
                                                                                               (2) 

where the value of α is calculated to be 323 according to the curve fitting 

analysis that is shown in Fig. 1. In this work, the modulus of elasticity of steel 

was assumed to be 200,000 MPa. This simplification can be used when the 

boundary conditions of the angle member are fixed translation and free 

rotation. However, as shown in Fig. 1, the discrepancy in the local buckling 

stress can be important, especially at low b/t values. Therefore, for higher 

precision, the full procedure that is presented in the next sections, which 

involves a finite element model, is recommended.  

 

     Fig.1 Calculated curve that relates 𝜎𝑐𝑟 and (b/t) values 

2.2. Experimental program 

The objective of the experimental program is to provide test results on 

local buckling behavior from specimens of various geometries. Forty-two 

short angle specimens, which are listed in Table 1, were tested under pure 

compression and the force-deformation behavior was measured. The leg 

width-to-thickness ratio, namely, (b/t), of the specimens ranged from 9.5 to 

19. According to (CSA-S16) [25] and Eurocode 3 [27], all specimens are 

classified as class 4 sections, which are subject to local buckling prior to 

yielding under compression. The steel grade of the specimens is ASTM-A36 

[28] and their material properties are listed in Table 1. 

The lengths of specimens were selected to avoid global buckling 

instability. Most configurations were tested on two identical specimens to 

evaluate the repeatability of results. The average result of these identical tests 

was considered the final result to better represent the types of sections that 

are available in the market. Since the specimens are short and they fail under 

the local buckling mode, the effects of geometrical imperfections and residual 

stresses are not considered. These effects are more important on global 

buckling mode, which is outside the scope of this article. Taking the discussed 

effects in consideration adds additional parameters to the prediction, which 

renders finding a solution highly complicated; hence, these effects are not 

investigated further in this article. 

To provide continuous and uniform end conditions throughout the tests, 

the extremities of all specimens were accurately milled flat and strictly 

perpendicular to the axis of the angle. The specimens were supported by a 

thick steel plate without a hinge for the test. The alignment of the centroid of 

the angle with the line of action of the force was secured by top and bottom 

adjustment plates (Fig. 2) that were bolted to the thick plates. To avoid any 

eccentric moment, the center of the force that was applied by the machine 

coincided with the center of gravity of the section. The angle-shaped opening 

in each set of adjustment plates provided the required end constraints: fixed 

translation and free rotation.  
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Fig. 2 Adjustment plate in the supports 

 

 

 

Table 1 

Properties of the short angle test specimens 
 

Test  Section  Length (mm)  b/t  𝐹𝑦  (MPa)  𝐹𝑢 (MPa)  E (MPa)  𝜎𝑐𝑟 (MPa)  𝜆𝑝  

1 L152x152x7.9  600 19.2 339 519 178000 264 1.13 
 

2 L152x152x7.9  600 19.2 339 519 178000 264 1.13 
 

3 L152x152x7.9  400 19.2 339 519 178000 308 1.05 
 

4 L152x152x7.9  400 19.2 339 519 178000 308 1.05 
 

5 L152x152x9.5  600 16 390 543 207000 381 1.01 
 

6 L152x152x9.5  600 16 390 543 207000 381 1.01 
 

7 L152x152x9.5  400 16 390 543 207000 440 0.94 
 

8 L152x152x9.5  400 16 390 543 207000 440 0.94 
 

9 L152x152x16  600 9.5 395 514 188281 1026 0.62 
 

10 L152x152x16  600 9.5 395 514 188281 1026 0.62 
 

11 L152x152x16  400 9.5 395 514 188281 1199 0.57 
 

12 L152x152x16  400 9.5 395 514 188281 1199 0.57 
 

13 L152X102X9.5  433 16 373 495 206297 508 0.86 
 

14 L152X102X9.5  437 16 373 495 206297 508 0.86 
 

15 L152X102X16  438 9.5 375 564 212700 1359 0.53 
 

16 L152X102X16  439 9.5 375 564 212700 1359 0.53 
 

17 L152X102X16  680 9.5 375 564 212700 1080 0.59 
 

18 L152x152x9.5  598 16 392 541 201000 381 1.01 
 

19 L152x152x9.5  597 16 392 541 201000 381 1.01 
 

20 L152x152x9.5  598 16 392 541 201000 381 1.01 
 

21 L152X102X9.5  718 16 371 492 208000 440 0.92 
 

22 L152x152x9.5  850 16 380 526 210000 350 1.04 
 

23 L152X102X16  800 9.5 375 563 212700 960 0.63 
 

24 L152X102X16  300 9.5 375 563 212700 1657 0.48 
 

25 L152X102X16  800 9.5 375 563 212700 960 0.63 
 

26 L152x152x13  850 11.7 388 547 202626 636 0.78 
 

27 L152x152x13  850 11.7 388 547 202626 636 0.78 
 

28 L152x152x13  500 11.7 388 547 202626 723 0.73 
 

29 L152x102x13  800 11.7 407 587 193387 727 0.75 
 

30 L152x102x13  800 11.7 407 587 193387 727 0.75 
 

31 L152x102x13  300 11.7 407 587 193387 1110 0.61 
 

32 L152x102x7.9  800 19.2 405 557 204017 302 1.16 
 

33 L152x102x7.9  800 19.2 405 557 204017 302 1.16 
 

34 L152x102x7.9  300 19.2 405 557 204017 416 0.99 
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35 L76x76x6.35  400 12 379 526 203000 612 0.79 
 

36 L76x76x6.35  400 12 379 526 203000 612 0.79 
 

37 L76x76x6.35  300 12 379 526 203000 657 0.76 
 

38 L76x76x6.35  300 12 379 526 203000 657 0.76 
 

39 L76x76x7.9  400 9.6 388 555 203000 952 0.64 
 

40 L76x76x7.9  400 9.6 388 555 203000 952 0.64 
 

41 L76x76x7.9  300 9.6 388 555 203000 1024 0.62 
 

42 L76x76x7.9  300 9.6 388 555 203000 1024 0.62 
 

        
 

The compression jig was set up for performing the tests as shown in Fig. 

3 in a 500-kN hydraulic testing machine. The loading was displacement-

controlled at rates that ranged from 0.12 to 0.3 mm/min according to the 

length of the specimen to reach the maximum load within 5 to 10 minutes. 

The test was continued up to the occurrence of a substantial nonlinear 

behavior. The relative displacement of the specimens was measured by a 

displacement transducer that was attached to the adjustment plate from the 

bottom to the top (Fig. 3).  

2.3. Material property tests  

Two or three coupons were cut and prepared from each batch of steel 

material and tested under tension according to the ASTM A370-02 [29] 

standard. The values of 𝐹𝑦 that were provided by the coupon tests were used 

to calculate 𝜆𝑝 for each specimen. The values are listed in Table 1.  

 

 

 

 

3. Definition of material stress-strain behavior 

Based on the force-deflection results from the short angle tests, 42 stress-

strain material behaviors were extracted. Each material behavior is related to 

the corresponding 𝜆𝑝  value of the specimen. The values of σ(stress) and 

ε(strain) are calculated by assuming homogeneous behavior as σ = P/A and ε 

= δ/L, where P is the applied force (N); A is the cross-sectional area (mm2); δ 

is the vertical deflection of the specimen (mm); and L is the length of the 

specimen (mm).  

Fig. 4 plots the measured behaviors of six specimens. To characterize the 

behavior of a member under compression, it is assumed that the full stress-

strain curve can be characterized by 2 points: A(εA,σA), which denotes the first 

peak in the curve, and B(0.01,σB). Table 2 reports the εA, σA, and σB values. 

Other points were also considered; however, based on the accuracy of the 

fitted curve, the two points that are specified above were selected. Using the 

short angle test results (Table 2) and a curve fitting technique, Equations 3 to 

5 were developed for calculating the coordinates of points A and B based on 

the value of 𝜆𝑝. Since the number of tested specimens was limited, the range 

of values of 𝜆𝑝 for which the equations apply was limited to 0.57-1.20. This 

also affected the calculated values of σA in terms of the material yield stress. 

Fig. 5 plots the equations and the distribution of the test points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Test setup and displacement transducer 
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Fig. 4 Measured stress-strain behaviors of six test specimens 

 

𝜀𝐴 = 0.0004965 ×  (1 + 𝜆𝑝
−11.6 )

1
5.8  + 0.001521              0.57 <  𝜆𝑝 < 1.20                 (3)  

 

𝜎𝐴 = 407.9 × (1 + 𝜆𝑝
20)−

1
10                                                       0.57 <  𝜆𝑝 < 1.20                (4) 

 

  

  𝜎𝐵 = 350.1 ×  𝜆𝑝
2  − 903.9 × 𝜆𝑝  + 809.1                        0.57 <  𝜆𝑝 < 1.20                 (5)  

 

 

Table 2  

Results of the short angle tests 

 
Test  𝜆𝑝 𝜀𝐴  𝜎𝐴 (MPa)  𝜎𝐵 (MPa)  

1 1.13 0.0017 298 228 

2 1.13 0.0018 288 229.9 

3 1.05 0.0022 313 234 

4 1.05 0.0035 297 242 

5 1.01 0.0023 389 248 

6 1.01 0.0021 379 250 

7 0.94 0.0028 401 269.7 

8 0.94 0.0028 400 267.8 

9 0.62 0.0032 407 371.2 

10 0.62 0.0027 406 398.7 

11 0.57 0.0032 409 406.6 

12 0.57 0.0032 410 406.3 

13 0.86 0.0029 367 271.7 

14 0.86 0.0031 367 270.8 

15 0.53 0.0035 350 374 

16 0.53 0.0049 353 376 

17 0.59 0.0022 350 350.7 

18 1.01 0.0025 390 256.9 

19 1.01 0.0026 384 254.8 
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20 1.01 0.0024 377 256.2 

21 0.92 0.0024 371 254 

22 1.04 0.0022 356 241.6 

23 0.63 0.003 422 376 

24 0.48 0.005 423 436.7 

25 0.63 0.0035 425 392 

26 0.78 0.0034 413 305 

27 0.78 0.0032 413 301.8 

28 0.73 0.0048 420 356.8 

29 0.75 0.0036 414 332.2 

30 0.75 0.0035 413 334 

31 0.61 0.007 450 453 

32 1.16 0.0021 336 234.6 

33 1.16 0.0021 319 245.1 

34 0.99 0.0031 404 285.7 

35 0.79 0.0029 418 292.6 

36 0.79 0.003 419 293 

37 0.76 0.0034 411 329 

38 0.76 0.0038 415 324.3 

39 0.64 0.0031 431 406.8 

40 0.64 0.0027 429 422 

41 0.62 0.003 432 427 

42 0.62 0.0031 429 423.6 

 

 

 
 

Fig. 5 Plots of equations 3 to 5 and the distribution of the test points 
 

The coordinates of points A and B are used to calculate the three unknown 

parameters (C, D, and k) that are used to define the stress-strain equation (6). 

Since the behavior of steel in the first steps of loading is completely elastic, the 

third criterion that is used to calculate the parameters of the equation is the slope 

of standard steel stress-strain material in elastic range, which is assumed to be 

200,000 MPa (Young’s modulus). The main stress-strain equation is expressed 

as follows:  
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 𝜎 = {
200000 ×  𝜀                                               𝜀 ≤ 0.0005  

𝐶 ×  𝜀𝑚 × ( 𝜀𝑚 + 𝐷 × 𝜀𝑚 
(−𝑘) )(−𝑘)      𝜀 > 0.0005     

  (6) 

𝜀𝑚 = 1000 ×  𝜀                                                                      (7)      

Equations 3 to 5 relate the 𝜆𝑝  value of any class 4 member to two 

characteristic points, namely, A and B, of the stress-strain curve. Then, Equation 

6 relates these two points to a complete and modified stress-strain curve that 

can be included in a beam element as a material behavior. The values of the 

unknown parameters in the equation (C, D, and k) were obtained via trial and 

error. A simple script was developed for inputting the 𝜆𝑝  value. The script 

calculates the coordinates of points A and B based on Equations 3 to 5. Then, 

points A and B are substituted into Equation 6, which yields the full stress-strain 

behavior. Table 3 lists the values of parameters C, D and k that are calculated 

based on points A and B for each specimen and 𝜆𝑝  value. The output of 

Equation 6 can be entered as a nonlinear material behavior into any finite 

element software. An alternative simplified solution is to define the material as 

a bilinear stress-strain relation without using Equation 6. The bilinear behavior 

could be defined by using 𝜎𝐴 as Fy and the slope of the line that connect points 

A and B (AB) as Et (the tangent modulus of the material). Fig. 6 compares the 

stress-strain curve that was calculated via Equation 6 with the test results from 

short angle specimens for six 𝜆𝑝 values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Comparison of the stress-strain relationship between the test results and Equation 6 
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Table 3 

Calculated values of parameters for Equation 6 

 
Tests 𝜆𝑝 C D k 

1,2 1.13 440.289 0.563 1.272 

3,4 1.05 526.022 0.625 1.329 

5, 6, 18, 19, 20 1.01 563.891 0.653 1.346 

7, 8 0.94 601.782 0.692 1.349 

9, 10 0.62 512.091 0.831 1.123 

11, 12 0.57 479.906 0.844 1.068 

13, 14 0.86 602.713 0.729 1.315 

15, 16 0.53 449.86 0.848 1.018 

17 0.59 493.722 0.84 1.091 

21 0.92 605.266 0.702 1.343 

22 1.04 536.673 0.633 1.334 

23, 25 0.63 517.363 0.827 1.133 

24 0.48 441.128 0.847 1.004 

26, 27 0.78 583.226 0.764 1.263 

28 0.73 565.003 0.786 1.224 

29, 30 0.75 572.487 0.777 1.24 

31 0.61 506.351 0.834 1.113 

32, 33 1.16 409.118 0.538 1.246 

34 0.99 578.983 0.665 1.351 

35, 36 0.79 585.562 0.76 1.269 

37, 38 0.76 575.722 0.773 1.247 

39, 40 0.64 523.266 0.824 1.143 

41, 42 0.62 512.091 0.831 1.123 

 
According to Fig. 6, the calculated curves are comparable to the 

experimental results and they have an acceptable accuracy. This is also 

demonstrated in Table 4, which compares the values of 𝜀𝐴, 𝜎𝐴 and 𝜎𝐵 from 

Equation 6 and experimental work on short angles. The mean value of the 

differences is very close to 1.0 and the COV values are reasonable for 

parameters 𝜎𝐴 and 𝜎𝐵. The strain at the peak is always difficult to capture in 

angles showing close to elasto-perfectly plastic behavior. As a consequence, 

the COV value for parameter 𝜀𝐴  is relatively high. Despite the statistical 

comparisons in Table 4, the trend of the stress-strain curve that was calculated 

via the formula accords with the experimental results and the inaccuracy of 

𝜀𝐴  does not impact the close agreement of the predicted curve with the 

experimental results. 

Table 4 

Comparison of parameters that were calculated via Equation 6 with test values for parameters 𝜀𝐴, 𝜎𝐴, and 𝜎𝐵  

 
Test 𝜀𝐴 (T) 𝜎𝐴 (T) 𝜎𝐵 (T) 𝜀𝐴 (F) 𝜎𝐴 (F) 𝜎𝐵 (F) 𝜀𝐴 (F/T) 𝜎𝐴 (F/T) 𝜎𝐵 (F/T) 

1 0.0017 298 228 0.0021 317 234 1.24 1.06 1.03 

2 0.0018 288 230 0.0021 317 234 1.17 1.1 1.02 

3 0.0022 313 234 0.002 358 245 0.91 1.14 1.05 

4 0.0035 297 242 0.002 358 245 0.57 1.21 1.01 

5 0.0023 389 248 0.002 376 252 0.87 0.97 1.02 

6 0.0021 379 250 0.002 376 252 0.95 0.99 1.01 

7 0.0028 401 270 0.0019 397 269 0.68 0.99 1 

8 0.0028 400 268 0.0019 397 269 0.68 0.99 1 

9 0.0032 407 371 0.0036 412 383 1.13 1.01 1.03 

10 0.0027 406 399 0.0036 412 383 1.33 1.01 0.96 

11 0.0032 409 407 0.0046 416 402 1.44 1.02 0.99 

12 0.0032 410 406 0.0046 416 402 1.44 1.01 0.99 

13 0.0029 367 272 0.0022 406 291 0.76 1.11 1.07 



Farshad Pourshargh et al.                                                                                                                                                                                                                                                         372 
 

14 0.0031 367 271 0.0022 406 291 0.71 1.11 1.07 

15 0.0035 350 374 0.0042 418 428 1.2 1.2 1.14 

16 0.0049 353 376 0.0042 418 428 0.86 1.19 1.14 

17 0.0022 350 351 0.0042 414 397 1.91 1.18 1.13 

18 0.0025 390 257 0.002 373 251 0.8 0.96 0.98 

19 0.0026 384 255 0.002 376 252 0.77 0.98 0.99 

20 0.0024 377 256 0.002 376 252 0.83 1 0.98 

21 0.0024 371 254 0.0021 401 274 0.88 1.08 1.08 

22 0.0022 356 242 0.0019 363 247 0.86 1.02 1.02 

23 0.003 422 376 0.0034 411 379 1.13 0.97 1.01 

24 0.005 423 437 0.0046 421 433 0.92 1 0.99 

25 0.0035 425 392 0.0034 411 379 0.97 0.97 0.97 

26 0.0034 413 305 0.0024 408 317 0.71 0.99 1.04 

27 0.0032 413 302 0.0024 408 317 0.75 0.99 1.05 

28 0.0048 420 357 0.0026 409 336 0.54 0.97 0.94 

29 0.0036 414 332 0.0025 408 328 0.69 0.99 0.99 

30 0.0035 413 334 0.0025 408 328 0.71 0.99 0.98 

31 0.007 450 453 0.0038 412 388 0.54 0.92 0.86 

32 0.0021 336 235 0.0021 302 231 1 0.9 0.98 

33 0.0021 319 245 0.0021 302 231 1 0.95 0.94 

34 0.0031 404 286 0.002 384 257 0.65 0.95 0.9 

35 0.0029 418 293 0.0024 408 314 0.83 0.98 1.07 

36 0.003 419 293 0.0024 408 314 0.8 0.97 1.07 

37 0.0034 411 329 0.0025 408 323 0.74 0.99 0.98 

38 0.0038 415 324 0.0025 408 323 0.66 0.98 1 

39 0.0031 431 407 0.0033 411 374 1.06 0.95 0.92 

40 0.0027 429 422 0.0033 411 374 1.22 0.96 0.89 

41 0.003 432 427 0.0036 412 383 1.2 0.95 0.9 

42 0.0031 429 424 0.0036 412 383 1.16 0.96 0.9 

Average 
      

0.93 1.02 1 

COV (%) 
      

30.29 7.56 6.53 

 
Note: (T: Test, F: Formula) – The stress values are specified in MPa. 

 

 
4. Evaluating the method with experimental results 

4.1. Experimental Program 

To evaluate the accuracy of the method, the numerical results were 

compared to the results of experimental tests that were performed at 

Université de Sherbrooke [24] on four X-bracing frame configurations. The 

test setup is a two-dimensional frame than can include angle members that 

act as X-braces. Fig. 7 and Fig. 8 present a sketch and a photograph of the test 

set-up. A lateral load was applied to the frame, which introduces compression 

and tension forces into the angles. The maximum capacity of the jack is 500 

kN and it is mounted horizontally to a rigid supporting system. The frame was 

restrained by steel cables to avoid out-of-plane deflections. The beam-to-

column connections were designed as pinned joints using a single bolt such 

that no bending moment was applied to the frame members and the lateral 

force induced direct axial tension and compression into the angles. 

To measure the applied force to the angles, strain gauges were placed on 

end connection plates. Fig. 9 presents the geometry of the end plates. The end 

plates were of thickness 25.4 mm and two sets of plates were prepared for 

bolt sizes of 12.7 mm and 15.9 mm. To ensure the accuracy of the measured 

force, all assemblies of end plates and strain gauges were calibrated separately. 

Then, the recorded data from the strain gauges that were mounted on the end 

plates could be transformed to the applied force. In addition, displacement 

transducers were used to measure the lateral and out-of-plane deformations 

of the frame and braces. The load was applied based on the displacement 

control principle with a rate of 0.5 mm/min.  
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Fig. 7 Schematics of the test setup [24] 

 

 

 
Fig. 8 X-bracing test setup [24] 

 

 
Fig. 9 Geometry of the end plates and locations of the strain gauges (dimensions in millimeters) [24] 
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4.2. Test Specimens 

The X-bracing configuration involves two single angle sections under 

tension and compression. The target member is the angle under compression. 

Each angle is connected to the end plates using three bolts on one leg. The 

same leg is restrained in the middle of the member by a single bolt that is 

connected to the other bracing member, which is under tension. A filler plate 

was provided to fit the space between two angles in the middle and to ensure 

sufficient lateral support at the point of attachment (Fig. 10). The two 

configurations were L38X38X3.2 and L44X44X3.2 angle sections. The 

repeatability of results was assessed by testing two specimens for each 

configuration. Table 5 lists the specimens and their properties, which are 

based on tests that were conducted on coupons.  

 
Fig. 10 Lateral support of the angles in the middle [24] 

 

 

Table 5 

Details of the X-bracing test specimens 

 
Test Section D (mm) Fy (MPa) 

1 L38X38X3.2 12.7 370 

2 L38X38X3.2 12.7 392 

3 L44X44X3.2 15.9 393 

4 L44X44X3.2 15.9 393 

 
Note: (D: Bolt diameter) 

4.3. Finite Element Modeling of the Specimens 

The four angle specimens of the previous section were modeled using the 

Code_Aster software. Fiber beam elements are considered, and the optimum 

element size was evaluated to be 100 mm after conducting preliminary tests. 

To simplify the analysis, only the bracing angle members and the end 

connection plates are included in the model. A preliminary deflection value 

of Length/1000 [30] at the mid-length of the braces is applied to the weak 

bending axis as a global geometrical imperfection. It is assumed that the 

outside frame members are rigid in comparison to the angle members. 

Therefore, the end connection plates on top are supported by fixed supports 

with only unrestrained lateral displacement. The bottom supports are assumed 

to be fixed. The angle members are connected to these supports via two 

elements: a rigid beam element, which is used to include the member 

eccentricity, and a nonlinear spring, which is used to model the three-bolt-

connection behavior. The properties of the spring element depend on the 

slippage and the bolted connection behavior according to the formulas that 

are presented by Rex et al. [33]. To model the single bolt that attaches the 

members at the middle of the bracing system, it is assumed that the middle 

nodes have identical displacement. However, the relative rotational 

displacement is free at this point. 

The proposed method was applied to the analysis. First, 𝜎𝑐𝑟  was 

calculated for each specimen using Code_Aster (Fig. 11). Since the boundary 

conditions of the members are not as described in Section 2.1, Equation 2 

cannot be used and finite element modeling is implemented instead. In the X-

bracing tests, the angle member needed to be restrained at the middle for 

modeling the pinned connection. Since CUFSM could not apply this type of 

restraint to the member, Code_Aster was used to perform the calculation. The 

bracing member under compression was modeled in Code_Aster using plate 

elements and mesh refinement was optimized via several trials. Each element 

had four corner nodes with six degrees of freedom and the maximum element 

size was 4 mm. Fixed boundary conditions were applied to the nodes on one 

leg of the member on each end. To model the constraint in the middle of the 

brace member, a hinged support was applied to a node on the same supported 

leg (Fig. 7). Then, the elastic buckling analysis was performed and the 𝜎𝑐𝑟 

value was calculated for the brace member. 

The next step was to calculate the 𝜆𝑝  value for each specimen via 

Equation 1. Table 6 summarizes the calculated 𝜎𝑐𝑟  and 𝜆𝑝  values for each 

specimen. Then, the stress-strain curve is calculated using the two steps that 

were specified earlier: first, Equations 3 to 5 were used to calculate two points, 

namely, A and B, on the curve for the specified value of 𝜆𝑝; second, the 

parameters in Equations 6 and 7 were calculated such that the stress-strain 

curve passes through points A and B. In the final step, the calculated curve is 

applied as a material behavior to the fiber elements of the specimens. The 

nonlinear analysis phase is completed by Code_Aster and the assumptions of 

nonlinear material and large displacements are included in the procedure.  

 
Fig. 11 Local buckling mode of a specimen (Test 3) 

 

 

 

Table 6 

Calculated 𝜎𝑐𝑟 and 𝜆𝑝 values for the test specimens 

 

 

 

 

 

 

4.4. Results comparison and discussion 

The experimental specimens failed due to local buckling phenomena. Fig. 

12 shows the final deflection for four of the test specimens. Fig. 13 compares 

the failure stresses of the experimental tests to those of the finite element 

models and the member capacity based on ASCE 10-97 [34] and EC3 [27]. 

To evaluate the performance of the presented method, another set of analyses 

is performed without applying the proposed method to account for local 

buckling in the model. According to the comparisons, neglecting the local 

buckling failure in the analysis results in very high failure stresses. In the class 

Test 
𝜎𝑐𝑟 

(MPa) 
 

𝜆𝑝 

  

1 295 1.11 

2 295 1.15 

3 234 1.29 

4 234 1.29 
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4 sections of this study, the local buckling failure controls the member 

capacity. Although the global buckling effect is included in the analysis due 

to large displacement option, it cannot take into account local failures which 

results in very high values of failure stress. 

According to Table 7, the results of failure stress (σfailure) for the finite 

element model are much more accurate and consistent with the tests when the 

presented method is applied. The mean value of FEA to Test results is 1.02 

when the modification of material behavior is involved in the model. Despite 

the use of large displacement analysis, the above value increases dramatically 

to 1.54 if the effect of local buckling is ignored. Hence, the procedure that is 

presented in this study offers an appropriate solution for modeling the local 

buckling behavior of slender sections by beam elements. 

Comparing the results of the presented method and the design capacity 

of the specimens that is based on ASCE 10-97 and EC3, the proposed method 

yields results that are similar to ASCE 10-97 and that are consistent with (but 

less conservative than) EC3. The coefficient of variation (COV) is slightly 

less than for design codes. For test 4, the discrepancy between the finite 

element model and the experimental test reaches a maximum of 15 percent. 

This is also consistent with the maximum error that is obtained with ASCE 

10-97. This error could be due in part to the loading and boundary conditions 

that are used in the bracing tests, which are not perfectly represented in the 

model and in the codes. 

 

Fig. 12 Local failure of test specimens (2 and 3) [24] 

 

 

 
 

Fig. 13 Comparison of failure stress results 
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Table 7 

Accuracy of the analysis with and without utilization of the presented method 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Note: (w-lb: with local buckling and w/o-lb: without local buckling) 

 

5. Conclusions 

 

This article presented a new method for including the local buckling failure 

of class 4 members that are modeled by fiber beam finite elements. To consider 

this phenomenon, the stress-strain material behavior of the member was 

modified in the finite element model. A stress-strain curve formula was 

provided for each class 4 member that is based on the local buckling slenderness 

value (𝜆𝑝 ) of the member. Forty-two short angle specimens with 𝜆𝑝  values 

between 0.57 and 1.20 were tested and the force-deflection behavior of each 

specimen was recorded. Then, the stress-strain behavior was calculated for each 

of the 𝜆𝑝 values of the tests. Based on the above stress-strain behaviors and 

curve fitting technique, a general formula was presented that relates the 𝜆𝑝 

value to a stress-strain material behavior. 

To apply the method to a full-scale model, each class 4 member is 

recognized and the corresponding 𝜆𝑝 value is calculated. In the next step, the 

modified stress-strain curve is generated via the presented formula. Finally, the 

curve is assigned to the corresponding member as the material behavior in the 

finite element software. 

To evaluate the feasibility and accuracy of the method, it was implemented 

for four cross-braced frame structures that were tested at Université de 

Sherbrooke. For the two studied configurations, class 4 angle sections were used 

as bracing members. The results were compared to two fiber element models, 

with and without using the proposed method. It was observed that when utilizing 

the proposed method in the models, the mean ratio of the model-to-test failure 

stress is 1.02, whereas this ratio increases to 1.54 when the method is not utilized. 

Additionally, comparing the proposed method to the design capacity that is 

calculated based on Eurocode and ASCE standards demonstrated that the new 

method provides more consistent results. Although the proposed method is not 

a practical design procedure, it may be used to improve nonlinear beam models 

of lattice towers that aim at complementing and reducing the need for full-scale 

transmission tower tests.  

The presented method for modifying the material stress-strain behavior is 

only valid for the 𝜆𝑝values interval of 0.57 to 1.20. Future research is needed 

for expanding this interval to cover more versatile class 4 sections such as 

unequal leg angles. Additionally, the method was validated with only four 

bracing tests. Further investigations should be conducted to validate the 

proposed method on more complex structures and field test results.  
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Test 𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒  FEA  

(MPa) 

𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒  test 

(MPa) 

𝜎𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  

ASCE (MPa) 

𝜎𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  EC3 

(MPa) 

𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒  (FEA/test) ratio ASCE / 

test 

EC3/test 

 
w-lb w/o-lb 

   
w-lb w/o-lb 

  

1 206 284 230 191 162 0.89 1.23 0.83 0.7 

2 193 293 180 191 167 1.07 1.62 1.06 0.92 

3 230 360 239 226 179 0.96 1.5 0.94 0.75 

4 230 360 200 226 179 1.15 1.8 1.13 0.89 

Average 
     

1.02 1.54 0.99 0.82 

COV (%) 
     

11 15.4 13.2 13.3 


