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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

A new theory for nonlinear analysis of shear-deformable circular arches is derived, in which Timoshenko’s assumption on the deformation 

of cross-section and the Green strains are adopted. In the variational equation, the nonlinear energy of the shear and the transverse normal 

stresses is included. Substituting the internal forces from linear analysis, a set of linearized equations is derived for buckling analysis of 

shear deformable arches. These equations are then used to solve the buckling of circular arches and rings under three types of radial 

pressures to compare the various results appeared in the literature. 

Linear analysis is carried out on hinged arches under uniform radial pressure to check the changes of displacements and internal forces after 

the shear deformation is considered. It is found that the axial force is more uniform along the arch length when shear deformation is 

considered, and the bending moment and shear force are smaller, but the displacements are always larger. 

Buckling of arches under radial pressure under various boundary conditions are studied, buckling factors for symmetrical and 

anti-symmetrical buckling are tabulated, and approximate formulas for the critical loads are proposed. 
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1. Introduction 

 

In-plane buckling of arches is a classic problem [1,2,3]. The early literature 

review on arches with Bernoulli’s assumption was presented in Ref. [4]. This 

paper will address the buckling of circular arches whose shear deformation 

cannot be neglected. Such a situation occurs when the arch is a trussed arch, or 

the web of the arch has openings with regular intervals. Early studies on 

shear-deformable arches were mainly focused on their vibration [5,6]. 

 

trussed arch

Arch with holes on web

(a)

(b)

 

Fig.1 Shear deformable arches 

 

Study on buckling of arches incorporating shear deformation of their 

cross-sections may date back to the early Russian literature [7]. Dinnik [7], 

without any introduction to the theoretical development, presented Eq. (1) as 

the critical force of hinged arches under water pressure: 
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Where ,E G  are Young’s and shear moduli of steel respectively, I  the 

second moment of the cross-section, 
sA  the effective shear area, R  the 

centroidal radius of the arch,  half of the subtended angle of the arch. Based 

on Ref. [7], Eq. (1) was obtained by Bovin in 1937, but no further information is 

available because of the language limitation and the long history. 

Smith and Simitses [8] investigated also the effect of transverse shear 

deformation on buckling of rings and developed the following equation for the 

fundamental mode of buckling (n = 1): 
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Guo and Huang [9], Dou et al. [10] studied the buckling of arches with 

I-section with regular web openings numerically, and used the following 

equation to define the slenderness of arches. 
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Guo et al. [11] investigated the buckling and load-carrying capacity of 

3D-trussed arches, Guo et al. [12] studied the arches with corrugated webs. 

Attard, Zhu and Kellermann [13] carried out a new study on the effect of shear 

deformation, using finite strain formulation, the following critical load was 

obtained: 
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Zhu, Attard and Kellermann [14] investigated the nonlinear buckling of 

shallow shear-deformable arches, Attard, Zhu and Kellermann [15] studied the 

buckling of funicular (parabolic and catenary) shear-deformable arches. 

There exist great differences among Eqs. (1,3,4). This paper presents a new 

study on the buckling of shear-deformable circular rings and arches under radial 

pressure. The theoretical derivation is an extension of the authors’ early study 

on arches based on Bernoulli’s assumption [4]. 

 

2．A nonlinear theory of arches incorporating shear deformation 

 

2.1 Assumptions and coordinate systems 

 

Fig.2 illustrates the following right-handed coordinate systems： 

(1) r y− − is a cylindrical coordinate system located at the curvature 

center of the arch, it is fixed in space and used to measure the deformations of 

the arch; 

(2) x y z− −  is a Cartesian coordinate system located at the centroid of 

the cross-section, it is fixed on the cross-section and changes its direction as the 

arch deforms. The original x-axis has the same direction as the r-axis, the z-axis 

points in the direction of increasing   . 

The cross-section of the arch is bi-symmetrical, the radius of the centroidal 

axis is R . The displacements of any point P( , )x y  on the cross-section are 

denoted by u and w in the x- and z-directions, respectively. Following 

assumptions are adopted in the derivation： 

(1) The cross section has dimensions far less than the radius of the arch; 

(2) The cross-section remains plane but not perpendicular to the deformed 

axis; 

(3) The displacements may be finite, but the strain is small. 
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Fig.2 Coordinate systems, deformation of the cross-section 

 

2.2 The strain-displacement relations 

 

Referring to Fig.2, u and w  of Point P ( , )x y  on the middle surface of 

the cross-section in the x and z directions can be written out 

 

,
r

u u w w x
R

= = −                                                   (5a, b) 

  

in which u and w are the displacements of the centroid of the cross section in the 

x and z directions respectively,   is the rotation of the cross-section due to 

pure flexural deformation. ( ) ( )  =   , r  is the radius of Point P ( , )x y . 

There are three independent strain components, each of them is composed of 

linear and nonlinear parts.  
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Strain-displacement relations are expressed as [16]:  
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Substituting Eqs. (5a, 5b) into Eqs. (7a-5f), one obtains 
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Where 
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  is the shear angle of the cross-section. There are following relations between 

these quantities 
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Stresses on the cross-sections are z , xz and x (in the web) and y (in the 

flanges). The external loads are balanced by the longitudinal normal stress z  

and the shear stress xz , the transverse normal stress x ( y ) are produced to 

keep equilibrium of the infinitesimal sectorial plate elements(web) or 

cylindrical elements(flange). z  is related to the normal strain, xz  is found 

based on the equilibrium of infinitesimal elements, it is also related to the shear 

deformation in an averaged sense because Timoshenko’s assumption is only 

concerned with cross-sectional average shear deformation. x ( y ) can only be 

determined by equilibrium condition of the infinitesimal element. 

Based on Hooke’s law, the stresses z  and zx are 
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The axial force N, bending moment M and shear force xQ  on the cross 

section are: 
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The axial force is positive when it is tensile, the bending moment is positive 

when the inner side of the arch is in tension, the shear force is positive when it 

points in the positive x direction on the positive cross-section. 

 

2.2 Principle of virtual work and equilibrium equation 

 

For arches, the virtual work equation is 
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(1) The first part of the virtual work is related to the linear longitudinal 

strain: 
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in which  
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(2) The second part is related to the nonlinear longitudinal strain: 
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(3) The linear part of the virtual work of the shear stress zx is 
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The nonlinear part of the virtual work of the shear stress zx   
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(4) the nonlinear virtual work of the transverse normal stress x is  
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Fig.3 Balance of infinitesimal sectorial element 

 

Fig.3 shows an infinitesimal element, its equilibrium equation in the radial 

direction is: 
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Multiplying both sides by x, integration along the height of the cross 

section, one has  
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on the other hand 
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where qR is the radius on which the radial load acts, qx  is the coordinate. 
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The final virtual work equation is： 
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Substituting Eqs. (15a-d) into Eqs. (24), and combining like terms 
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Carrying out partial integration and introducing m  − = − ： 
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     

   

−

     
   − + − + − − + − − −  

  

   + − − + − − − − − −  

+  + + + − − + − − + + 


− − + − + −
 



( )

( ) ( ) 0

m x

m x

T
N Q w

R

W M
M M W T Q N N u

R R







 

   


     

−

− −

  
+ − +  

  

− 
+ + + + + + +  + = 

 

  (26) 

 

one obtains the following equilibrium equations for infinitesimal segment 

of the cross-section：  

(1) the axial equilibrium 

 

( )

x q q

x x

m x m z 0

q R xM M M
N Q N Q

R R R R

N Q N N q R


 

  

     
  − + − + − − + −   

  

 − + − − − =

               (27a) 

 

(2) the bending moment equilibrium 

 

( ) ( )x m x m x q q 0M RQ M W RQ W M q R x      − − − − − −  + + =     (27b) 

 

(3) the radial balance: 

 

( )

x m

x x

( ) ( )

0

M W W M
N Q N N

R R

Q N q R

 
  



+ − − + − + − + 
 

− + − =

                  (27c) 

 

Eqs. (27a-c) are derived without any simplification, they are used for 

buckling or nonlinear analysis with moderate displacements, the quantity T, 

defined in Eq. (21b) and appearing in Eqs. (20,23), disappears in Eqs. (27a,b,c). 

This is because the second order effects of different stresses cancel each other 

partly. If one neglects the effect of the transverse stress x ( y ), some 
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quantities will be left in the equilibrium equations and probably lead to 

unexpected solutions[4]. 

The boundary conditions are given in Table 1 

 

Table 1 

Boundary conditions 

Displacement The corresponding generalized force 

 

w  
m x( )(1 ) ( )

M M T
N Q

R R R
  − + + − +

 

 

 

u  ( )

x

m
x m

( )
W M M

Q N N N
R R

WM M
Q N

R R R

  


 

−
+ +  + = −

  
− − − + +  

   

/ R  m(1 )M W T  + + +
 

 

From Eq. (27b) ( 0qx =  is introduced for simplicity ) : 

 

m
x x m

( ) ( )M WM M W
Q Q

R R R

  


 + −
= − − − +                           (28) 

 

Substituting xQ  into Eq. (27c), one obtains 

 

( ) ( )

( )

m m x m x m

2

( ) 0x x

M M M M
N N Q Q

R R R R

W W
Q N N Rq

R R

     

 
 

     
   + + − + + + + + +   

   

 
 − + + + − − = 

 

   (29) 

 

2.3 Differential equations for linear analysis 

 

Equilibrium equations for linear analysis are (Fig.4) 

 

x x x z x0,      0,      0Q N q R N Q q R M Q R  − + = + + = + =            (30a, b, c) 

 

Eliminating xQ  from the above equations  

 
2

x 0NR M q R+ − =                                                     (31a) 

 
2

z 0N R M q R − + =                                                    (31b) 

 

N

M Qx

N

M

Qx

+dM

+dN

+dQxA

BRd

q
x qz

 

Fig.4 Balance of an infinitesimal segment 

 

Substituting Eq. (8a) into Eqs. (16a, b, c), using Eq. (30c), the following 

relations are obtained for linear analysis 

 

( ) ( )m 2 3

EI EA EI
N EA w u u R

RR R


  = + = + + +                           (32a) 

 

( )z x s2
d ,    

A

EI u
M x A R u Q GA

RR
  

 
= − = + = − 

 
                   (32b, c) 

 
2 2

z m 2

( )
d ( ) d ( )

A A

x x r R EI
W A E A w u

r r r R
  

−
= = −  +                (32d) 

 

Equilibrium differential equations in terms of displacements for linear 

analysis are： 

 

( ) 2

z 0EA w u q R + + =                                                  (33a) 

 

( ) ( ) 2

x2
0

EI
EA w u u u R R q R

R
    + + + + + − =                         (33b) 

 

( )
1

R
u   = −

+
                                                    (33c) 

 

Differentiating Eq. (33b) once, and subtracting Eq.(33a) from it, one has 

 

( )(4)

x z4

EI
u u R R q q

R
    + + + = +                                       (34) 

 

Substituting Eq. (33c) into Eq. (34), the basic differential equation for 

linear analysis of Timoshenko’s circular arch is obtained: 

 

( )(4)

x z3
2

(1 )

EI
q q

R
   + + = +

+
                                      (35) 

 

Solving Eq. (35) for , and then finding u by Eq. (33c), and w by Eq. (33a) 

or Eq. (33b), introducing boundary conditions, one may obtain the full linear 

solution of Timoshenko’s circular arch. 

 

2.4 Differential Equations for Linearized Buckling Analysis 

 

Equations for linearized buckling analysis of circular arches are derived 

from Eqs. (27a,b,c), based on the static criterion for buckling. 

An arch satisfying Eqs. (27a,b,c) is in a state of equilibrium. Introducing a 

small perturbation into the arch, letting it drift from this equilibrium state. 

When the perturbation is removed, if the arch is still in a state of equilibrium 

(still satisfying Eqs. (27a,b,c)), the equilibrium of the original system is 

neutral, the corresponding load is the critical load. The terms after perturbation 

are 

 

m m,  , ,   ,  ,  ,  u u w w         + + + ++ ++                        (36a) 

 

x x z z x x,  ,  ,  ,  ,  q q q q N N M M Q Q W W+ + + + + +                       (36b) 

 

It is usually required that the loads are kept unchanged during the 

perturbation, here load increments are produced due to the change of loading 

direction as explained by Dinnik[7] and Simitses[3]. 

Substituting Eqs. (36a,b) into Eq. (27a) and Eq.(29), neglecting higher 

order terms, and noting that the system is in a state of equilibrium before the 

perturbation, the following equations for buckling analysis are obtained 

 

 

( ) ( )

( ) ( )

m m x x

x x x m x m

z 0

M M M
N N N Q N Q N

R R R

M M
Q Q Q N Q N

R R

N N Rq

 
   

   

 

  
    − + − − − − + − + −

   
   + − + − + − + −  

   

− − − =

     (37a) 

 

( ) ( ) ( ) ( )

( ) ( )

( )

m m m m

x m m x m x m

x x

x

2 2

0

x

M M M
N N N

R R R

M M M M
Q Q Q Q

R R R R

W W W W
Q N Q N

R R

N N Rq

       

   

   
 

 


   + + − + − + + + + +

         
   + + + + + + +      

      

 + +
 − + − + + +  

 

− + − =

      (37b) 

 

( ) ( )x m m x m x m

( ) ( )

RQ M M M W W RQ RQ

M W M W

     

 

 = − − + − + − −

+ − + −

          (37c) 

 

If one neglects the effect of the prebuckling deformation, then 

 

( )

( )

m x x

x m z 0

M M M
N N Q N Q

R R R

Q N N Rq


  

 

   
   − + − − + − + − 

 

+ − − − =

                  (38a) 

 

( ) ( )

( ) ( ) ( )

m m x m x m

x x

2

1 1
 0

M M M M
N N Q Q

R R R R

Q N W W N Rq
R R

     

   

     
   + + − + + + + + +   

   

− + + + − − =

 (38b) 
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( ) ( )x m x mRQ M M W RQ W M     = − − − − −  +                (38c) 

 

If the prebuckling internal forces are computed by linear analysis, then 

these forces satisfy Eqs. (30a, b, c). Eqs. (38a, b, c) are further simplified into  

 

( )m x x m z

2
0

M M M
N N q R Q N N Rq

R R R


    

  
   − + − − − − + − − − = (39a) 

 

( ) ( )

( )

m m m z

x 0

M M M W
N N q R

R R R R

W
N Rq

R


     




 
  + + − + + + + +

  + − − = 
 

             (39b) 

 

( )x mRQ M M W W M    = − − − −  +                                (39c) 

  

Because the incremental quantities are small, the increments of internal 

forces are given by 

 

( ) ( ) ( )3 2
,   

EA EI EI
N w u R u M R u

R R R
   = + + + = +                    (40a, b) 

 

( )x s3 2
,  ( )

EI u EI
Q R u GA W w u

RR R
 

 
  = − + = − = + 

 
,                (40c, d) 

 

m m,   ,   ,   ,   
w u u w u

R R R R
         

 +
 = = + = − = − − = −        (41a-e) 

 

Substituting Eqs. (42a-d) and Eqs. (43a-e) into Eqs. (41a-c), one has 

 

( )

( )

x2 2

x z

2
( ) ( )

( ) 0

EA w u M M
w u N R w q R w

R R R R

w u u
R w Q N N Rq

R R

 

 

  +
   − + − − − − − − 

 +  
  − + − − − − = 

 

        (42a) 

 

( ) ( ) ( )

( )

3

z2 2

x2 2

2

( ) ( )

( ) ( )
( ) 0

EA EI N
w u R R u u w u R

R RR

M M
w u R u w u q R w

R R

W u R W u R u
N Rq

RR R

  

 

 


     + + + + + + + −


     + + + + + + + −

    + +  
+ + − − − =   

  

               

(42b) 

 

( ) ( ) ( )

( )

s 2

2

EI M
GA u R R u R w

RR

u W
W u R R

R R

  

  

   − = − + − +

 
   − + − + − 
 

                       (42c) 

 

Eqs. (42a, b, c) are the linearized differential equations for buckling 

analysis of Timoshenko’s arches, in which the effect of the prebuckling 

deformation has been neglected, but all prebuckling internal forces are retained. 

 

3.  Buckling of rings under radial pressure 

 

3.1 Prebuckling deformations 

 

The ring is acted on by the uniform radial pressure p (along the centroid 

line), qx = -p, qz = 0. The deformation is a uniform contraction, no shear 

deformation occurs. The linear solution is 

 
p p p p p p p

x z x

2 p p
p p p p

m2

p p 2 p p p p

2 2

 ,     0,   ,   0,   =0,  0,   0

0,  ,   ,   ,    
(1 )

 ,  ( )
1

q p q N pR w Q

EI pR u u
u

EA R REAR

EI EI
M u pR W w u M

R R

 

   






= − = = − = = =

= = = − = =
+

= = −  + =
+

         (43) 

 

3.2 Buckling Equations 

 
In this example Eqs. (42a, b, c) simplify to 

 

( )
p

p

x z2

2
( ) ( )

EA w u M
w u N R w q R w Rq

R R R
  

 + 
   + + − + − + − = 

 
  (44a) 

( ) ( ) ( )

( )

3

x2

2

2 2 2 0

p

p
p

EA EI N
w u R R u u w u R

R RR

M u
w R u R u N Rq

RR

  

  

     + + + + + + + −

 
   + + + + + − − − = 

 

           (44b) 

 

( ) ( ) ( )s 2
2

pEI M
GA u R R u w u R

RR
       − = − + − + +                   (44c) 

 

The effect of pre-buckling bending moment is further neglected, Eq. (44c) 

simplifies to 

 

( )
1

R
u   = −

+
                                                    (45a) 

 

and Eqs. (44a, b) simplify to 

 

( ) ( ) 2

z2 0EA w u pR w w u R q   + − + =+−                              (45b) 

 

( ) ( ) ( )(4) 2

x2 2 0
(1 )

EI
EA w u N w u R q

R
u       − + + + + + + − =

+
   (45c) 

 

Considering three types of radial pressure (Fig.2): 

Pressure 1: the direction of the pressure is unchanged during buckling,

0xq = , 0zq = ; 

Pressure 2: the pressure is directed toward the center of the arch, 0xq = ,

/zq pw R= − ; 

Pressure 3: the pressure is perpendicular to the tangent of the deformed 

centroid axis of the arch(static water pressure), x 0q = , ( )z /q p w u R= − −  

 

x z

0 0

0 ,   

0

p
q q w

R
w u

   
   

= = −   
   −   

                                   (46) 

 

Assuming that the buckling deformations are 

 

cos ,    cos ,    cos   n n n nw B n C n u RC n    = = =                 (47a, b, c) 

 

where 

21

1
n

n


+ 
=

+
. Introduction of Eqs. (47a,b,c) into Eqs. (45b, c),  

 

( )2 2

0

( 1) 2 0n n n n

n n n

pR n n EA B EA pR RC pR B

B RC





 
 

 + − + − − =  
 − 

    (48a) 

 

( )
2 2

2 2

2

( 1)
2 (1 ) 0

(1 )
n n n n

n EI
pR EA n B EA pR n RC

R
 

 −
− + + − + = 

+  
       (48b) 

 

Let the determinant of coefficients of Eqs. (48a, b) vanish, one obtains the 

critical loads for three types of pressures (n = 2) 

 

( ) 2cr1

4
1

4( )(1 4 )

EI pR
pR

EA pRR

 
= − 

−+   
                                 (49a) 

 

( ) 2cr2

4.5
1

2(1 4 )

EI pR
pR

EA pRR

 
= − 

−+   
                                  (49b) 

 

( )
( ) 2cr3 1 4

3EI
pR

R+
=


                                                 (49c) 

 

Eq.(49c) is the same as that by Smith and Simitses [8]. 

Considering that the shear stiffness and the axial stiffness may be in the 

same order of magnitudes, exact buckling loads may be found from Eq.(49a) 

and Eq.(49b) as follows 
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( )
2

2 2 2

21

1 2 2

1 5 5 16

2 1 4 1 4 1 4

4 4

(1 4 ) (1 4 )

cr

AR AR AR EI
pR

I I I R

EI EI

R R


 
  = + − + −  

 +  +  +  
 

= 
+  + 

    (50a) 

( )
2

2 2 2

22

2 2 2

1 2 9 2 9 36

2 1 4 1 4 1 4

4.5 4.5

(1 4 ) (1 4 )

cr

AR AR AR EI
pR

I I I R

EI EI

R R


 
  = + − + −  

 +  +  +  
 

= 
+  + 

 (50b) 

 

Table 2 presents values of 1 and 2 for / 5 ~ 100R i = and / sA A =1.2~20, 

both are close to 1.0. 

 

Table 2 

Factors
1 and

2  

s

A

A
 

1, /R i =
 2, /R i =

 

5 10 50 100 5 10 50 100 

1.2 0.971 0.991 1.00 1.00 0.940 0.980 0.999 1.000 

2 0.977 0.992 1.00 1.00 0.951 0.981 0.999 1.000 

5 0.987 0.993 1.00 1.00 0.971 0.985 0.999 1.000 

10 0.992 0.995 1.00 1.00 0.983 0.989 0.999 1.000 

20 0.996 0.997 1.00 1.00 0.990 0.993 0.999 1.000 

 

3.3 Solution under the assumption of inextensible arches 

 

Inextensibility is frequently used to simplify solution of arch buckling. In 

the case of rings, if one adopts this assumption, m 0 = ,then 

 

w u = −                                                                   (51) 

 

Substituting Eq.(51) into Eq.(45c) leads to 

 

( )(4) 3 (4)2 ( ) 0EI pR         + + + + − + =                        (52) 

 

from which one obtains (pR)cr = (pR)cr3. Eq. (45b) becomes 

 

0

( ) 0pR w w pR w

w w

 
 

 + − = 
 + 

                                           (53) 

 

So, the axial equilibrium is satisfied only in the case of Pressure 3 (static 

water pressure). For Pressure 1 and 2, the axial equilibrium equation is not 

satisfied, so the inextensibility assumption should not be used for these two 

types of pressures, Eqs. (49a, b) indicate that the buckling loads are affected by 

the axial stiffness of the arch for both Pressure 1 and Pressure 2. 

 

4.  Linear analysis of circular arches under radial pressure 

 

First we derive the prebuckling internal forces N, M, xQ , using Eq. (35) 

and Eqs. (33a, c). In the case of radial pressure, Eq. (35) is  
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The general solution is 
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Eq. (33b) becomes 

2

x
52

q R EI
w C u
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 = − − , integrating once： 
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 (55c) 

 

where  = R / i. Because of the symmetry, u is an even function, and w is an odd 

function,  starts at the arch top, 1 4 6 0C C C= = = .Eq. (33a) becomes 

( ) 0EA w u + = , so ( ) /EA w u R+ = constant, and Eq. (33b) is： 

 

5u u R R K C   + + + = =                                              (56) 
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R w u
K Rq EA

EI R

 + 
= − 

 
                                             (57) 

 

The boundary conditions are: : 00,wu  = == = , 3 constants are 
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Thus, we obtain the linear exact solution of hinged shear-deformable 

arches under uniform radial pressure： 
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The internal forces are  
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The linear solutions are illustrated in Fig.5, Fig.6 and Fig.7, where 

 
2 2

2 x x x
0

0 x

, , ( ) , , / , /
8 0.5

xq Q q R q RN M
n m M R Q U u W w

pR M q R EA EA



= = = = = =  

 

To highlight the effect of shear deformation, we take  = 10 and  = 0.0312, 

0.078, 0.26, 2.6, corresponding to A / As = 1.2, 3, 10, 100, respectively. It can be 

seen in Fig. 5, Fig. 6 and Fig. 7 that 

(1) displacements become larger when shear deformation is included, but 

for the arch with 60 =  ,the increase is very small; and 
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(c) shear force               (d) radial displacement 
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(e) circumferential displacement 

Fig.5 Linear solutions for ρ=10, α=60° 
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(c) shear force                (d) radial displacement 
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(e) circumferential displacement 

Fig.6 Linear solution for ρ=10, α=40° 
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(c) shear force                  (d) radial displacement  
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(e) circumferential displacement 

Fig.7 Linear solutions for ρ=10, α=20° 

 

(2) the axial force is more uniform along the arch axis when shear 

deformation is included, and the bending moment and shear force are smaller. 

Such results are somewhat beyond expectation. 

 

5.  Buckling of hinged circular arches 

 

This section addresses the buckling of shear-deformable hinged arches 

under three types of radial pressures 

(1) Assuming that there is only the uniform axial force

xN q R pR= = − . Assuming 
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from Eq. (45a) 
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Using Galerkin’s method to Eqs. (45b, c), one obtains the critical loads for 

three types of radial pressures p.  

For Pressure 1 (constant-direction): 
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from which  
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For Pressure 2 (centered pressure): 
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From which 
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The parameters 1 2,     are solved for from Eq. (62) and Eq. (64), 

respectively, the expressions are complicated, exact values are compared with 

Eq. (63b) and Eq. (65b) in Fig.8, excellent agreements are found. 
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Fig.8 Coefficients ψ1, ψ2  

 

and for Pressure 3 (water pressure): 
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(pR)cr3 is identical to Eq. (1) introduced by Dinnik [7]. 

When the shear stiffness of the cross-section is infinite, s = 0, the critical 

loads are denoted by (pR)cr,f, they are  

 

( )
2 2 2 2

2 2 2 2 2 2cr1,f

1 ( / 1)

1 0.2 ( / 1) 2

EI
pR

R

  

   

−
=  

+ − +
                           

(67a) 

 

( )
2 2 2 2

2 2 2 2 2 2cr2,f

1 ( / 1)

1 0.6 ( / 1) 1

EI
pR

R

  

   

−
=  

+ − −
                           (67b) 

 
2 2

cr3,f 2 2 2
( ) 1

EI
pR

R

 

 

 
= −  
 

                                             (67c) 

 

On the other hand, if the bending stiffness is very large, and the shear 

stiffness is small, shear buckling of the arch will occur, the critical loads are 

denoted by (pR)cr,s, they are obtained from Eqs. (62, 64, 66) by setting EI =   
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So Eqs. (63a, 64a, 66) may be expressed in form of interactive buckling   
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Eq.(69) is also valid for ring, and for ring  
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6.  Buckling loads under other boundary conditions  

   

Assuming that the arches are uniformly compressed, and no other forces 

and deformations are considered. The buckling of such arches may be solved 

based on Eqs. (46a, b, c). Only water pressure (Pressure 3) is considered. In this 

particular pressure, the inextensible assumption is exactly satisfied, the 

differential equations for buckling of shear deformable circular arches under 

uniform compression are Eqs. (45a) and Eqs. (51, 52). The general solutions 

valid for any boundary conditions are  
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where A, B, C, D, F, J are unknown constants, and 
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6.1 Fixed arch 

 

(1) Antisymmetrical buckling 

In this case, u is an odd function, w and  are even functions. The boundary 

conditions are: at  = : u = w = 0,  = 0. The final critical equation is  
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The solutions are given in Table 3 in terms of buckling factors K  , and the 

approximate expression is 
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Table 3 

Buckling factors of fixed arches: anti-symmetrical buckling 

  

s  

0 0.05 0.1 0.2 0.3 0.4 0.5 

150 2.0435 1.8370 1.6685 1.4100 1.2211 1.0770 0.9635 

300 2.0369 1.8310 1.6630 1.4052 1.2168 1.0731 0.9599 

450 2.0269 1.8220 1.6548 1.3981 1.2104 1.0673 0.9546 

600 2.0153 1.8116 1.6451 1.3899 1.2032 1.0608 0.9486 

750 2.0049 1.8021 1.6366 1.3826 1.1969 1.0550 0.9434 

900 2.0000 1.7978 1.6328 1.3793 1.1940 1.0528 0.9413 

 

(2) Symmetrical buckling: The critical equation is 
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The solutions are given in Table 4 in terms of buckling factors K, and the 

approximate expression is 
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Table 4 

Buckling factors of fixed arches: symmetrical buckling 

  

s  

0 0.05 0.1 0.2 0.3 0.4 0.5 

150 3.3615 2.8059 2.4107 1.8861 1.5537 1.3239 1.1553 

300 3.3491 2.7952 2.4011 1.8780 1.5464 1.3173 1.1492 

450 3.3288 2.7777 2.3855 1.8648 1.5347 1.3066 1.1393 

600 3.3009 2.7537 2.3641 1.8468 1.5187 1.2920 1.1257 

750 3.2663 2.7240 2.3377 1.8245 1.4990 1.2741 1.1092 

900 3.2258 2.6895 2.3073 1.7990 1.4765 1.2535 1.0903 

 

6.2 Symmetrical buckling of hinged arches 

 

The critical equation is 
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(1 ) tan
1 tan

k k k
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The buckling factors K are listed in Table 5, and the approximate 

expression is 
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Table 5 

Buckling factors K of hinged arches: symmetrical buckling 

  

s  

0 0.05 0.1 0.2 0.3 0.4 0.5 

150 2.2192 1.9951 1.8121 1.5313 1.3259 1.1691 1.0455 

300 2.2002 1.9779 1.7965 1.5180 1.3144 1.1589 1.0364 

450 2.1686 1.9495 1.7706 1.4961 1.2953 1.1421 1.0213 

600 2.1246 1.9098 1.7344 1.4654 1.2687 1.1186 1.0002 

750 2.0682 1.8592 1.6884 1.4264 1.2349 1.0887 0.9734 

900 2.0000 1.7978 1.6328 1.3793 1.1940 1.0528 0.9413 

 

6.3 Symmetrical buckling of arches with three hinges 

 

The anti-symmetrical buckling load is the same as the antisymmetrical 

buckling of hinged arches. In the case of symmetrical buckling, 5 boundary 

conditions are 

 

:   0, 0u w M = = = = ;  0:   0, 0w M = = =                         (80) 

 

The sixth boundary condition comes from Table 1. Because 0u  at the 

apex of the arch, the force must vanish, ( )x 0up wQ  − =− . Introducing Eqs. 

(72a-e) into these boundary conditions, it obtains 
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3 3
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k k k

k

   

 

+ − + −
=                        (81) 

 

The buckling factors K are given in Table 6, and the approximate expression is 
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+
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Table 6 

Buckling factors of arches with 3 hinges: symmetrical buckling 

  

s  

0 0.05 0.1 0.2 0.3 0.4 0.5 

150 0.7525 0.7166 0.6840 0.6270 0.5787 0.5373 0.5015 

300 0.7521 0.7163 0.6837 0.6267 0.5784 0.5371 0.5013 

450 0.7516 0.7158 0.6832 0.6263 0.5780 0.5367 0.5009 

600 0.7509 0.7151 0.6826 0.6257 0.5776 0.5363 0.5006 

750 0.7503 0.7146 0.6821 0.6252 0.5771 0.5359 0.5002 

900 0.7500 0.7143 0.6818 0.6250 0.5770 0.5358 0.5000 

6.4 Fixed arches with a hinge at the apex of the arch 

 

The buckling load of anti-symmetrical buckling is the same as that of fixed 

arches. The critical equation for symmetrical buckling is 
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  (83) 

  

The buckling factors K  are presented in Table 7, and the approximate 

expression is 
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Table 7 

Buckling factors of arches with one hinge: symmetrical buckling 

  

s  

0 0.05 0.1 0.2 0.3 0.4 0.5 

150 1.114 0.999 0.907 0.770 0.672 0.599 0.543 

300 1.117 1.002 0.910 0.772 0.674 0.601 0.544 

450 1.122 1.007 0.914 0.776 0.677 0.604 0.546 

600 1.129 1.014 0.921 0.782 0.682 0.608 0.549 

750 1.140 1.024 0.930 0.790 0.689 0.613 0.554 

900 1.154 1.037 0.943 0.800 0.698 0.621 0.561 

 

6.5 Comparison between proposed formulas and FE buckling analysis 

 

Table 8 gives some comparison between proposed formulas and FE 

buckling analysis for the arch 
045 , 13.56mR = =  under various boundary 

conditions, the cross-section is H500×300×10×16, and s 0.2669 = . 

Comparison shows that the proposed formulas are on the safe side. The largest 

difference is 5.9% occurring in fixed arched for which the actual uniformity of 

the axial force in the arch is slightly larger. 

 

Table 8 

Comparison of cr /N R  between proposed formulas and FE buckling analysis 

 
Anti-symmetrical buckling Symmetrical buckling 

FEM Eqn FEM/Eqn FEM Eqn FEM/Eqn 

Hinged arch 597.6 594.3 0.995 1073.2 1031.5 0.961 

Fixed arch 1040.6 979.8 0.942 1312.2 1257.5 0.958 

Three hinges 594.7 591.3 0.994 458.9 447.4 0.975 

One hinge 1028.9 968.1 0.941 549.9 538.1 0.979 

 

7.  Conclusions 

 

This paper derived a new theory for nonlinear and buckling analysis of 

shear-deformable circular arches. The derivation is based on the well-accepted 

Timoshenko’s assumption on the deformation of the cross-section, the Green 

strains are used. Based on the virtual work principle, the paper derived a new set 

of equilibrium equations for buckling analysis and nonlinear analysis with  

moderate displacements considering the shear deformation of the cross-section 

of the arches. Compared with others, the present paper included not only the 

nonlinear effect of longitudinal and shear stresses in the arch, but also the 

nonlinear effect of the transverse normal stresses in the arch. This was included 

because the authors believed that the second order effects of all the stresses 

necessary to keep equilibrium of the plate or shell element will cancel each 

other partly, and neglect of any one of them will probably lead to incorrect 

solutions. 

Linearization was carried out to obtain a set of differential equations 

suitable for buckling analysis. These equations are then used to solve the 

buckling of shear-deformable circular arches and rings under radial pressures to 

compare the various results appeared in the literature. 

Linear analysis is carried out on hinged arches under uniform radial 

pressure to see the changes of displacements and internal forces after the shear 

deformation is included. It is found that the displacements become larger when 

shear deformation is included, but for the arch with 60 =  ,the increase is very 
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small. The axial force is more uniform along the arch when shear deformation is 

considered, and the bending moment and shear force are smaller.  

The buckling factors for symmetrical and anti-symmetrical buckling under 

various boundary conditions are tabulated, and approximate formulas for the 

critical loads are proposed.
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