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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

Bolted joints are one of the key components of lattice transmission towers. Under alternating transverse loads, the preload 

of bolted joints will be reduced, which may cause bolt loosening and consequently change the inherent mechanical 

properties of the bolted joints and eventually trigger the structure failure. In order to study the critical loosening load of 

bolted joint in lattice transmission tower under the transverse load, the mechanical models of bolted joint with single shear  

plane and double shear planes are established. A new theoretical method of critical loosening load with considering the 

deformation of bolt screw threads is derived. The thread stresses of two typical bolted joints are given and compared with 

that from finite element method, which verified the accuracy of the new analytical method. The influences of bolt preload, 

friction coefficient of thread surface, bolt clamping length and number of shear planes on the critical loosening load of 

bolts are studied. 
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1.  Introduction 

 

Lattice towers are widely used all over the world as supporting structures in 

power grids, which are commonly constructed of angle section (L-shape) 

members connected by bolted joints[1]. Typical bolted joints in lattice tower are 

single leg bolted joint in diagonal member and lap splice bolted joint in leg 

member (as shown in Fig. 1), which has one shear plane and two shear planes 

respectively[2]. In practice, the lattice transmission tower often suffering from 

dynamic loads, such as wind loads, ice shedding, conductor galloping and etc[3]. 

Therefore, bolted joints in lattice transmission tower are usually worked under 

dynamic loads, which may cause the self-loosening of bolts and lead to the 

decline of clamping force. The changing of bolt clamping force may lead to the 

change of inherent characteristic of bolted joint and the whole structure, result in 

the failure of members or cascading failure of lattice tower[4-6]. Fig. 2 shows the 

tower cross-arm failure accident in 500kV Fengzhang line of the State Grid 

Corporation of China due to the conductor galloping in the early spring of 2014. 

Due to conductor galloping, alternate forces are loaded on the tower structure 

and bolted joints, which led to the bolt self-loosening and even falling down 

from the tower. Therefore, the tower cross-arms are weakened and has a 

tendency to form fatigue damage. The above presented failure modes of 

transmission tower caused by self-loosening of bolt happen occasionally, and it 

is difficult to detect in regular inspection as the number of bolted joints is 

numerous, which is a serious threat for the operation of power lines. Therefore, 

it is necessary to study the critical loosening load of the bolted joint to avoid the 

joint failure in lattice tower. 

In order to insure the safety of lattice tower, lots of researchers focus on the 

mechanical behavior prediction of lattice tower. In the numerical approaches, 

the geometric nonlinearity, material nonlinearity, second-order effects and joint 

effects are included to improve the accuracy[7-9]. Many researchers pointed out 

that the joint stiffness affects the mechanical behaviour of lattice tower greatly. 

Therefore, lots of joint models are presented and introduced in the numerical 

models of lattice tower[10]. However, in those numerical approaches, the 

looseness of the bolted joint has not been included, which may cause error in the 

analysis of the transmission tower structure by the direct nonlinear analysis 

method. 

In the direct nonlinear analysis of structures, the joint model with 

considering bolt preload status can lead to more precise results[11]. However, the 

critical self-loosening load of bolted joint should be determined before the bolt 

preload statuses are obtained. In the early stage of bolted joint self-loosening, 

the local slip of the thread surface will gradually accumulate under the action of 

the transverse cyclic load[12]. When the local slip on the thread surface 

accumulates to a certain degree, the torque of the thread surface will decrease, 

the thread contact surface is prone to overall slip, and the nut and the bolt will 

rotate relative to each other. The bolted joint will failure when the rotation of the 

bolt and nut reaches a certain degree. Therefore, the local slip of the thread 

surface will directly cause bolt loosening[13]. From the perspective of the 

deformation of the bolt, the bending deformation of the bolt shank will led to the 

periodically change of contact stress on thread surface under transverse load[14]. 

Meanwhile, the deformation of the threads will make the local friction of the 

thread contact surface easily overcome, resulting in local slip of the thread 

surface[15]. Obviously, the deformation of bolt shank and thread has important 

effects on the early stage bolted joint self-loosening. 

In this paper, the typical bolted joints in lattice transmission tower with one 

or two shear planes are studied. The calculation method of thread stress is 

verified by finite element model, and a new theoretical calculation method is 

presented to determine the critical load of early bolt self-loosening. The 

influence of the bolt joint parameters is discussed in detail to illustrate how to 

prevent the self-loosening of the bolts in the transmission tower. 
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Fig. 1 Bolted joint in lattice transmission tower 
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Fig. 2 Tower cross-arm failure accident caused by bolts loosening 

 
2.  Mechanical model of bolted joint 

 

In traditional lattice transmission tower, the axis of tower members is 

perpendicular to the bolts axis in connection. Therefore, the bolted joint will 

work under transverse load, as shown in Fig. 3 and Fig. 4. 

As can be seen in Fig. 3a, for the single leg bolted joint in diagonal member, 

there is only one shear plane. For the single shear plane bolted joint under 

transverse load, the friction between nut and the gusset will lead to the bending 

of bolt shank. However, the macroscopic slippage of bolt shank and nut will not 

occur until the self-loosening critical load of bolt reached[14]. Therefore, the bolt 

head and nut are still stick on the gusset surface, and their rotations are restricted. 

Fig. 3b shows the mechanical model of single shear plane bolted joint, and it 

can be equivalent substitution by Fig. 3c. 
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Fig. 3 Single shear plane bolted joint under transverse load 

 

The problem shows in Fig. 3c can be easily solved by linear superposition 

method. Since the clamping length l2 of the bolt is much larger than the 

clearance l1 between the bolt shank and the bolt hole, the influence of the 

clearance l1 on the bending moment of the bolt is ignored. The friction 
f

F  and 

the additional bending moment M  can be get separately 

 

f T
F F=           

2

1

2
T

M F l=                                    (1) 

 

However, for the lap splice bolted joint in tower main leg member, there are 

two shear planes as shown in Fig. 4. For the bolted joint with double shear 

planes, there will be no obvious load on the bolt before the clearance of middle 

gusset hole disappeared, as the top and bottom gusset are deformed 

simultaneously. However, after the slippage stopping, the contact between bolt 

shank and hole will produce friction between nut and gusset. Based on the same 

assumptions as single shear plane bolted joint, the bolt head and the nut are 

considered to stick on the gusset surfaces and their rotations are restricted before 

self-loosening occurring. Fig. 4b shows the mechanical model of double shear 

planes bolted joint, and it can be equivalent substitution by Fig. 4c. 
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Fig. 4 Double shear planes bolted joint under transverse load 

 

The problem shows in Fig. 4c also can be solved by linear superposition 

method. The friction 
f

F  and the additional bending moment M  can be get 

separately 

 

2

2

2
1T

f

F a b
F

l l

 
= + 

 
                                            (2) 

 
( )

2

2

T
F a

M l a
l

= − −                                              (3) 

 

When 2a l= , the equation (2) and (3) are simplified as 

 

2

T

f

F
F =              

1

8
T

M F l= −                               (4) 

 

As can be seen in equation (1) and (4), it is obviously that the friction 

between the gussets and nut and additional bending moment will be effected by 

the number of shear planes. For the same transverse load 
T

F , the friction of 

double shear planes bolted joint is half of single shear plane bolted joint, and the 

additional bending moment is only a quarter of single shear plane bolted joint 

acting on the opposite direction. 

 
3.  Critical conditions of bolt self-loosening 

 

In practice, there are many types of thread, such as rectangle thread, 

triangle thread, trapezoid thread and etc. In lattice transmission tower bolted 

joint, the triangle thread is commonly used. Therefore, the critical conditions of 

bolt self-loosening with triangle thread are presented, which can be easily used 

in other threads. 

 

3.1. Mechanical analysis of thread 



Wen-Qiang Jiang et al.  576 

The forces act on the thread are preload 
PF , additional bending moment 

M  and the friction force 
fF （See Fig. 3a and Fig. 4a）when the bolted joint 

worked under transverse load, which should be included in the analysis of 

thread. In order to study the critical conditions of bolt self-loosening, the detail 

geometry of thread should be considered. The global Cartesian coordinate 

system with ordinate origin O  located at the intersection point of bolt axis and 

bearing surface of nut is established, as shown in Fig. 5. 
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Fig. 5 FBD of bolt thread 

 

In Fig. 5,   is the angle between the radial direction of the bolt shank 

cross-section at point A and the transverse load direction. zA is the corresponding 

height of point A in the direction of z-axis. Expand the thread from the initial 

point to the current position. The two-dot chain line in Fig. 5 is the projection of 

the unfolded thread on the cross section of the bolt at zA. Therefore, for any 

point on the thread , the relationship between height z and angle   can be 

expressed as 

 

2

2

d
z tg =                                                   (5) 

 

Where, 
2

d  is the thread diameter and   is the helix angle of thread. 

It has been proved that the local slippage of the thread is an important 

reason of bolt loosening[11-12]. Therefore, it is necessary to analyze the force on 

the micro area of the thread surface. As shown in Fig.5, a local natural 

coordinate is established, and the forces on the micro area of unit length around 

point A on the nut thread are presented. Since the radial dimension of the thread 

is small compared with the diameter of the bolt or nut, it is assumed that the 

force on the thread face is even in the radial direction of the thread. S ,
nS  and 

b
S  represent the component forces of tangential, normal and radial forces 

loaded on this micro-region. 
T

S is the transverse load on the nut thread caused 

by the 
fF , and S  is the resultant forces due to the bolt preload 

pF  and the 

additional bending moment M . 

In order to simplify the derivation, the relationship between global 

Cartesian coordinate ( , , )x y z and local natural coordinate ( , , )b n  on the thread 

should be presented firstly. As shown in Fig. 6, the local natural coordinate can 

be got by rotating the global Cartesian coordinate around its axis by the 

following three steps: a) Rotate   about z-axis; b) Rotate −  about x-axis; c) 

Rotate   about y-axis, in which   is the thread angle. 
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Fig. 6 Relationship between global Cartesian coordinate and local natural coordinate 

 

According to the coordinate transformation rules, the relationship of global 

Cartesian coordinate ( , , )x y z and local natural coordinate ( , , )b n  can be 

given as below. 

 

x b

y

z n



   
   

=    
      

T

                                                  (6) 

 

in which, 

 

=  
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T T T T  

 

cos sin 0
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0 0 1

 

 

− 
 

=  
  

1
T
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 

 

 
 
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3
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The transform matrix can be easily calculated by multiplied matrix 

1
T , 

2
T  

and 
3

T .  

 

cos cos sin sin sin sin cos cos sin sin sin cos

sin cos sin cos sin cos cos sin sin cos sin cos

sin cos sin cos cos

           

           

    

+ − − 
 

= − + 
 − − 

T

    (7) 

 

Based on the force balance condition on the micro-region A, the balance 

equations can be derived as following 

 

(cos cos sin sin sin ) ( sin )sin cos

( cos )(cos sin sin sin cos ) 0

b

n T

S S S

S S S


       

     

+ − −

+ + − + =
               (8) 

 (sin cos sin cos sin ) ( sin )cos cos

( cos )(sin sin cos sin cos ) 0

b

n

S S S

S S


       

     

− + −

+ + + =
               (9) 

 
sin cos ( sin )sin ( cos )cos cos 0

b n
S S S S S


      − − − + + =       (10) 

 

Therefore, S
, 

b
S and 

n
S can be calculated by combining the equation 

(8), (9) and (10). 

 

sin cos sin
T

S S S


  = +

                                     

(11) 

 (sin sin cos cos sin ) cos
n T

S S S     = − −

                    

(12) 

 (cos cos sin sin sin )
b T

S S     = − +

                           

(13)

  

The condition that the micro area of the thread contact surface does not 

produce relative slip is that the total force of the external load along the 

tangential direction of the thread surface is equal to or less than the friction force. 

Considering there are no slippages on any contact area of thread, the following 

condition should be satisfied[11-12] 

 

2 2

b n
S S S


+                                               (14) 

 

In order to determine the critical transverse load  T C
F , the relationship of 

S  and 
TS  with the bolt preload 

P
F , additional bending moment M  and the 

transverse loads 
fF  should be derived firstly. 

 

3.2. Determination of S  
 

As shown in Fig. 5, the resultant forces S can be broken up into force 
1

S  

caused by the bolt preload 
p

F , and force 
2

S
 
caused by the additional bending 

moment M. 

 

3.2.1. Determination of 
1

S  Caused by Bolt Preload 
P

F  

In order to get the thread force 
1

S  at unit length generated by the bolt 

preload 
P

F , the global Cartesian coordinate system with ordinate origin O 

located at the intersection point of bolt axis and bearing surface of nut is 

established (see Fig.5). As shown in Fig. 7, the axial forces ( )F z  and 

additional bending moment ( )M z  at arbitrarily cross section of bolt will vary 

with the height based on the elastic deformation assumption of thread. 
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Fig. 7 Bolt force diagram 

 

The axial strain of bolt shank 
1b
  and the axial strain of nut 

1n
  can be 

expressed as following 

 

1

1

( )

( )

b

b b

n

n n

F z

A E

F z

A E






= 


 =
 

                                                 (15) 

 

where, 
b

A ,
n

A  and 
b

E ,
n

E  are the effective area and Young modulus of 

bolt shank and nut respectively. 

Therefore, the forces d ( )F z  on dz  is 

 

1
d ( ) cos dF z S s= −                                             (16) 

 

Where ds  is the infinitesimal length of thread along the direction of the 

helix, and 

 

d
d

sin

z
s


=                                                    (17) 

 

Substituting equation (17) into the equation (16), the following can be get 

 

1
cos d

d ( )
sin

S z
F z





− 
=                                           (18) 

 

Therefore, 

 

1

d ( )
cos sin

d

F z
S

z
 = −                                           (19) 

 

The axial elastic deformation of the unit width of the ISO metric triangular 

thread under the unit force as shown in Fig. 8 is sum of the deformation 
1
  

caused by the bending, the deformation 
2

  caused by the shearing force, the 

deformation 
3

  caused by the inclination of the root, the deformation 
4

  and 

5
  caused by the shear deformation of the root and the radial expansion and 

contraction of the thread. The axial elastic deflections of unit length thread of 

bolt and nut are[16] 
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        (20) 

 

Where, the sub-indices b  and n  represent the bolt and the nut respectively, 

  is Poisson ratio, p  is pitch, and D  is the pitch diameter of bolt shank. 

0
D  is the outer diameter of nut. 

 

δ1,δ2,δ3,δ4,δ5

S·cosα

S·sinα

α

a
a

b
b

l1

 
Fig. 8 The axial elastic deformation of thread 

 

Therefore, the thread deformation of bolt shank and nut 
1b

  and 
1n

  are 

as following 

 

1 1

1 1

cos

cos

b b

n n

S

S

 

 

 =  

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                                            (21) 

 

where, 

 

1 2 3 4 5

b

b b b b b b

b

k

E
     = + + + + =                                 (22) 

 

1 2 3 4 5
n

n n n n n n

n

k

E
     = + + + + =                                   (23) 

 

in which, 
bk , 

nk are defined as the longitudinal elastic deformation 

coefficients of bolt thread and nut thread, which are related to the parameters of 

the bolt and nut and the Poisson's ratio as shown in equation (20). Therefore, the 

deformations 
n  and 

b  are linear to 
bk  and 

nk  in the elastic 

deformation of the thread.  

However, the relationship between 
n , 

b  and 
bk , 

nk can be effected 

by the surface roughness of the thread, thread coating etc. In order to describe 

the elastic deformation of the thread accurately, the deformation correction 

coefficient   is introduced to correct the deformation of the thread. Therefore, 

the axial elastic deformation of the bolt and nut is corrected to 

 

b

b

b

k

E


 =

                 
n

n

n

k

E


 =

                            
(24) 

 

Combined equation (19), (21) and (24), the following can be get 

 

1

1

d
sin

d

d
sin

d

b
b

b

n
n

n

k F

E z

k F

E z








 = −  


 = −  
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                                        (25) 

 

In order to satisfy the deformation compatibility condition, the following 

equation should be satisfied 

 

1 1

1 1

d d

d d

b n

b n
z z

 
 

+ = − −                                        (26) 

 

Substituting equation (15) and (25) into (26) leads to 

 
2

2

2

d

d

F
F

z
=                                                    (27) 

 

Where, 1 1
( ) / [( )sin ]b n

b b n n b n

k k

A E A E E E

 
 = + +  

The analytical solution of equation (27) is 

 

( ) 1 2
sinh coshF z C z C z = +                                      (28) 

 

Considering the boundary conditions  

 

( ) 0

(0)
P

F H

F F

=

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The equation (28) satisfies the above boundary condition, then the 

following can be easily got  

 

cosh
( ) sinh cosh

sinh
P

H
F z F z z

H


 



 
= − + 
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                            (29) 

 

Substituting equation (29) into (19) leads to  

 

1

cosh sin
( ) cosh sinh

sinh cos
P

H
S z F z z

H

 
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 

 
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                        (30) 

 

Equation (30) presents the expression of thread force 
1

S  at unit length 

generated by the bolt preload 
P

F . 

 

3.2.2. Determination of 
2

S  Caused by Additional Bending Moment M  

The thread forces 
2

S  at unit length generated by the additional bending 

moment M  on the thread surface also varies with height, as shown in Fig. 7. 

The axial strain 
2b
  of the bolt and the axial strain 

2 n
  of the nut are 

 

2

2

2

2
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2
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2

b

by b

n
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M z d

I E

M z d
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 


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
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                                          (31) 

 

in which, ( )M z  is the additional bending moment of the bolt cross 

section at the z position. 
by

I  and 
ny

I are the moment of inertia of the bolt and 

the nut about y-axis (see Fig. 5). 

Similar to the solution method of d ( )F z  in the previous section, the 

additional bending moment d ( )M z  on dz  is 

 

2 2
( )cos cos d

d ( )
2sin

S z d z
M z

 



 
= −                                    (32) 

 

Rearrange the equation, we get 
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(33) 

 

Similar to equation (21), the axial deformation of the bolt thread and the 

axial deformation of the nut thread are 
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Substitute equation (33) into (34), the axial deformations 
2b

  and 
2n

  

can be obtained as following 
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(35) 

 

In order to satisfy the deformation compatibility condition, the following 

equation should be satisfied 

 

2 2
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d d
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b n

z z
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If 
b n

E E= , substitute equations (31) and (35) into the deformation 

coordination equation (36) to get 

 
2 22

2

2

2

1/ 1/ cosd ( ) 2 d ( )
( ) 0

d d 4sin

by ny

b n

I I dM z tg M z
M z

z d tg z k k



   

+
+  −  =

+
                 (37) 

 

Equation (37) is a second-order linear differential equation with variable 

coefficients. The additional bending moment M can be obtained by solving 

the boundary value problem in the numerical solution. The boundary 

conditions are 

 

(0)

( ) 0

M M

M H

=


=
                                                   

(38) 

 

Therefore, by substituting d / dM z  obtained by equation (37) into 

equation (33), the force 
2

S  in the micro-region of unit length caused by 

additional bending moment M  can be obtained. 

 

3.3. Determination of 
T

S  Caused by Transverse Load 
f

F  

 

When the elastic deformation of the thread is considered, the transverse 

load also produces a shear stress that varies with position on the threaded 

surface, as shown in Fig. 7. The tangential strain b


 
of the bolt at the z position 

and the tangential strain n
  of the nut are 
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                                                 (39) 

 

in which, 
b

G and 
n

G are the shear modulus of bolt and nut. ( )
T

F z  is the 

transverse load on the cross section of the bolt at the z position. 
b

f  and 
n

f  

are the shear shape coefficients of bolts and nuts,they equal to 0.9 and 2.0 

respectively[17]. 

Similar to the solution method of d ( )F z  in the previous section, the 

tangential force d ( )
T

F z
 

acting on dz  is 

 
( ) d
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sin

T
T
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
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= −                                              (40) 

 

Rearrange the equation, we get 
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(41) 

 

According to the deformation formula of the thread under the radial force[16], 

the radial deformation 
b

u  of the bolt thread and the radial deformation 
n

u  of 

the nut thread can be calculated as following  
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where,   is the radial deformation coefficient of the thread just as   

defined in equation (24). 

In equation (42), r

b
k and r

n
k are the radial elastic deformation coefficients 

of bolt thread and nut thread, and their calculation formulas are 
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The simultaneous equations (41) and (42), the radial deformations 
b

u  

and 
n

u  of the bolt thread and the nut thread can be get respectively. 
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In order to satisfy the deformation compatibility condition,
b

 ,
n

 ,
b

u  and 

n
u  need to meet the following relationship 
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(45) 
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In order to satisfy the deformation compatibility condition, the following 

equation should be satisfied 

 
2 2
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Equation (46) is a second-order linear differential equation with variable 

coefficients. The transverse load 
T

F  can be obtained by solving the following 

boundary value problem in the numerical solution. The boundary conditions 

are 

 

(0)

( ) 0

T f

T

F F

F H

=

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(47) 

 

Therefore, by substituting d / d
T

F z  obtained by equation (46) into 

equation (41), the transverse load 
T

S  in the micro-region of unit length caused 

by the transverse load can be obtained. 

 

4.  Example analysis 

 

The grade 6.8 standard hexagon bolt (GB/T 5783-2016, Hexagon head 

bolts—Full thread) is studied and the geometry parameters of bolt are listed in 

Tab. 1 according to the national standard hex head bolts of the People's 

Republic of China. The yield load of bolt shank is defined as Fy. Two load 

cases with the preload of 0.7Fy and 0.5Fy are presented in this paper, and the 

transverse load of 70% critical slippage load of bolt supporting surface(5.6kN 

and 4.0kN for two preload conditions) are applied on the bolted joint. The 

coefficient of friction between bolt, nut and gusset plate is set as 0.15.  

 

Table 1  

The geometry parameters of M16 bolt 

Parameter Value 

Nominal diameter of thread（mm） 16 

Bolt shank cross section moment of inertia（mm4） 3216.99 

Nut cross section moment of inertia（mm4） 13069.02 

Nut height（mm） 14 

Clamping length（mm） 18 

Pitch（mm） 2 

Thread angle（o） 60 

 

4.1. Analytical method 

 

4.1.1. Distribution of bolt shank internal force 

The internal forces are calculated with the above presented method. The 

axial force ( )F z , the additional bending moment ( )M z  and the transverse 

load ( )
T

F z  are obtained and shown in Fig. 9. 
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a) axial force F(z)                   b）additional bending moment M(z)                  c）transverse load FT(z) 

Fig. 9 Distribution of bolt shank internal forces 

 

It can be seen in Fig. 9 that the axial load, additional bending moment and 

transverse load at the support surface of the nut (thread height equals to zero as 

shown in Fig. 7) are the largest. The internal forces are exponential increased 

as decrease of the thread height, which equal to zero when the thread height 

takes the maximum value. In the descend process of internal forces, the axial 

force decreases more smoothly, while the curves of the additional bending 

moment and the transverse load have slight fluctuations with the increasing of 

thread height which are due to the spiral change of thread. In addition, the 

additional bending moment in double shear planes bolted joint is a quarter of 

the single shear bolted joint, but the directions of the additional bending 

moment are opposite as shown in Fig. 9b. The transverse load of the bolt shank 

in the double shear planes bolted joint is half of the single shear as shown in 

Fig. 9c. 

In order to study the changing of axial force, additional bending moment 

and transverse load of threads, the ratios of axial force, additional bending 

moment and transverse load of each thread to the applied load in the single and 

double shear planes bolted joint are used to description. Tab. 2 shows the 

variation of the ratio under the the preload of 0.7Fy, and the variation range of 

the corresponding load ratio of the thread is in the parentheses. The thread 

number in Tab. 2 indicates that the thread is sequentially corresponding to the 

thread number from the initial engagement thread of the nut support surface 

until the last engagement thread. It can be seen that the axial force, additional 

bending moment and transverse load of the three threads near the nut support 

surface reach more than 50% of the applied load. However, the internal forces 

of the last three threads (thread number form 5 to 7) are less than 30% of the 

applied load. Therefore, the applied load is mainly acting on the first three 

threads(thread number form 1 to 3) near the nut support surface, and the loads 

on the other threads are relative small.

 
Table 2  

Variation range of thread load 

Thread number Ratio of axial force to applied load 
Ratio of additional bending moment to applied 

load 
Ratio of transverse load to applied load 

1 100%~73.0%（27.0%） 100%~71.3%（28.7%） 100%~100%（29.2%） 

2 73.0%~52.7%（20.3%） 71.3%~50.4%（20.9%） 70.8%~49.8%（21.0%） 

3 52.7%~37.2%（15.5%） 50.4%~34.9%（15.5%） 49.8%~34.3%（15.5%） 

4 37.2%~25.2%（12.0%） 34.9%~23.3%（11.6%） 34.3%~22.8%（11.5%） 

5 25.2%~15.6%（9.6%） 23.3%~14.3%（9.0%） 22.8%~13.9%（8.9%） 

6 15.6%~7.4%（8.2%） 14.3%~6.8%（7.5%） 13.9%~6.6%（7.3%） 

7 7.4%~0%（7.4%） 6.8%~0%（6.8%） 6.6%~0%（6.6%） 
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a）στ  due to preload FP                    b）στ due to additional bending moment M            c）στ due to transverse load Ff 
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Fig. 10 Stresses distribution on the thread surface 

 

4.1.2. Thread stress 

As presented above, the resultant forces 
1S , 

2S  and 
TS  can be 

determined by equation (30), (33), and (41) based on the calculation results of 

axial force )(zF , additional bending moment )(zM  and transverse load 

)(zFT
. Therefore, the tangential force 

S , normal force 
nS  and radial force 

bS  applied on the thread at unit length can be calculated by equation 

(11)~(13). Since the theory assumes that the thread force is uniformly 

distributed in the radial direction, and 
1S , 

2S  and 
TS  are thread loads in 

the micro region of unit length, the tangential stress 
 , normal stress 

n  

and radial stress 
b can be got by the thread force 

S , 
nS  and 

bS , which 

are shown in Fig. 10 and Fig. 11. 

Fig. 10a and Fig. 10d show the distribution of tangential and normal 

thread stress due to preload FP. The thread stress at the support surface of the 

nut are both maximum and rapidly decrease as the distance from the nut 

support surface increases. The maximum tangential stress of the thread is 

17.9MPa and 12.8MPa under the preload of 0.7Fy and 0.5Fy , and the 

minimum tangential stress of the thread is 4.2MPa and 3.0MPa respectively. 

The maximum normal stress of the thread is 412.9MPa and 296.0MPa 

respectively, and the minimum normal stress is 97.6 MPa and 70.0 MPa 

respectively. It can be seen that the normal stress is much larger than tangential 

stress caused by preload Fp, and the stress increased with the increasing of 

preload. 

 

Table 3  

Tangential and normal stress of thread caused by additional bending moment 

Thread 

number 

Maximum tangential stress/MPa Maximum normal stress/MPa 

70%Fy 50% Fy 70% Fy 50% Fy 

1 3.89(1.00) 2.79(1.00) 89.72(1.00) 64.33(1.00) 

2 2.82(0.72) 2.02(0.72) 65.17(0.72) 46.72(0.72) 

3 2.07(0.53) 1.48(0.53) 47.73(0.53) 34.22(0.53) 

4 1.54(0.39) 1.10(0.39) 35.50(0.39) 25.45(0.39) 

5 1.18(0.30) 0.84(0.30) 27.14(0.30) 19.46(0.30) 

6 0.94(0.24) 0.68(0.24) 21.75(0.24) 15.59(0.24) 

7 0.81(0.21) 0.58(0.21) 18.73(0.21) 13.43(0.21) 

 

Fig. 10b and Fig. 10e are the distribution of tangential and normal stress 

due to the additional bending moment. It can be seen that the thread stress 

exhibits the distribution of nearly cosine functions with periodic decay as the 

distance from the nut support surface increases. Since the directions of 

tangential and normal stress are opposite in the single shear plane and double 

shear planes, and the stress in the single shear plane are quadruple of double 

shear planes, the single shear plane is taken as an example for analysis. The 

maximum tangential and normal stress of each thread due to additional 

bending moment are shown in Tab. 3. The stress attenuation coefficient in the 

parentheses are used to describe the degree of attenuation of the maximum 

stress in each thread, and its value is the ratio of the maximum stress of the 

thread to the maximum stress of the first thread. The attenuation coefficient of 

maximum tangential stress and the normal stress generated by the additional 

bending moment on each thread are exactly the same under these two 

transverse load, and the maximum tangential and normal stress of the last 

thread are 21% of the first thread. It can be seen that the tangential and normal 

stress of the thread generated by the additional bending moment near the nut 

support surface are greater than away from the nut support surface, and the 

attenuation law of the tangential and the normal stress of the thread is same 

and independent to the transverse load. 

 
Table 4  

Maximum tangential, normal and radial stress generated by transverse load Ff 

 70% Fy 50% Fy Ratio 

Maximum tangential stress/MPa 63.90 45.81 1.4 

Maximum normal stress/MPa 27.96 20.04 1.4 

Maximum radial stress/MPa 7.26 5.21 1.4 

Note: The negative values in the Figure represent the opposite direction, so the absolute 

value in the table is taken as the maximum stress. 
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Fig. 11 Radial stress generated by transverse load Ff 

 

As indicated in equation (12), the radial force 
bS  is only related to the 

transverse load 
TS . The distribution of radial stress 

b  generated by the 

transverse load is shown in Fig. 11. It can be seen from Fig. 10c, Fig. 10f and 

Fig. 11 that the stress at the nut support surface are greatest and periodic decay 

as the distance from the nut support surface increases. Since the directions of 

normal, tangential and radial stress are identical in the single shear and the 

double shear planes, and the stress in the single shear planes are twice that of 
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the double shear planes, the single shear planes is also taken as an example for 

analysis. The maximum tangential, normal and radial stress of the two 

transverse loads and the ratio of maximum thread stress are summarized in Tab. 

4. It can be seen that the ratio of tangential, normal and radial maximum stress 

under two transverse loads are all 1.4, so the tangential, normal and radial 

maximum stress of the threads are only related to the transverse loads. 

Fig. 12 shows the thread stress at bolt preload of 0.7Fy(53kN) and 70% 

critical slippage load of bolt supporting surface(5.6kN). We can see the thread 

stress in the three directions has a large stress near the nut support surface, and 

exhibit a periodic attenuation distribution as the distance from the nut support 

surface increases, whether it has single shear plane or double shear planes. The 

maximum values of tangential stress in the single shear plane and double shear 

planes appear in the position of / 2 2k  = + (k is a positive integer of 0~6). 

Meanwhile, the maximum value of the tangential stress of the single shear 

plane relative to the double shear planes is reduced from 1.63 times to 1.56 

times in each circle of thread. The absolute maximum of the normal stress 

appears at 2k = , and the maximum value of the single shear plane relative 

to the double shear planes is reduced from 1.32 times to 1.26 times. The 

maximum value of the radial stress appears at 2k = or 2k  = + , and 

the maximum value of the single shear plane is twice that of the double shear 

planes. It can be seen that the thread force of the single shear plane is greater 

than that of the double shear planes, and the thread bearing capacity is mainly 

concentrated on the three threads near the nut support surface.
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Fig. 12 Thread stress under the combination of bolt preload and transverse load 

 

4.2. Finite element analysis 

 

In order to validate the presented theoretical method, the M16 standard 

hex bolt joint with single shear plane and double shear planes are analyzed 

with finite element method. During analysis 0.7Fy (53kN) bolt preload and 

70% critical slippage load of bolt supporting surface(5.6kN) are selected as 

analytical conditions. The connecting plate used for the bolted joint has a 

modulus of elasticity of 206GPa, a Poisson's ratio of 0.3,and a density of 

7850kg/m3. In the finite element models, three-dimensional tetrahedral 

elements are adopted in the bolts and nuts, and three-dimensional hexahedral 

elements are selected in the connecting plate. The mechanical properties of 

actual materials are simulated with multi-linear model. In order to correspond 

with the theoretical model, the connecting plates are assumed to be frictionless 

contact, and the other contact are set to frictional contact. In the single shear 

plane model, the boundary condition is that the right end of the bolted plate is 

fixed, and the left end is subjected to lateral load listed in Tab. 5. In the 

double-shear planes model, the right end of the upper and bottom plate are 

fixed, and the left end of the middle plate is subjected to lateral load. 

As shown in Tab. 5, the nut is divided into two part along the plane formed 

by the axis and the line of transverse load. The solid line in Tab. 5 of the nut 

represents the stress distribution on the thread in the current part of the nut. In 

order to verify the attenuation law of thread stress in theoretical analysis, the 

attenuation coefficient of mean contact stress on each thread are listed in Tab. 6. 

As We can see in the table that the attenuation coefficients of the mean contact 

stress of the threads in single shear and double shear are the same, which is the 

same attenuation law as theoretical method. At the same time, the attenuation 

coefficient of mean contact stress on each thread obtained by the theory and 

simulation results is equal at the thread away from the nut support surface. The 

difference is small near the nut support surface, and the difference is greatest at 

the third thread.

 
Table 5  

Finite element model and thread stress 

 Finite element model 

Stress distribution on the thread under combined load 

FT

Current part

 

FT

Current part  

Single 
shear 

Bolt

Nut

FT

 

Nut support surface

 

Nut support surface

 

Double 

shear 

Bolt

Nut

FT

 

Nut support surface

 

Nut support surface
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Table 6  

Attenuation coefficient of mean contact stress on each thread 

Thread 

number 

Double shear model Single shear model 

Theoretical 

method 
FEM 

Theoretical 

method 
FEM 

1 1.00  1.00  1.00  1.00  

2 0.72  0.70  0.72  0.68  

3 0.53  0.49  0.53  0.48  

4 0.39  0.37  0.39  0.36  

5 0.30  0.29  0.30  0.28  

6 0.24  0.24  0.24  0.24  

7 0.21  0.19  0.21  0.19  

 
4.3. Comparison and discussion 

 

For the theoretical method, the axial deformation correction coefficient   

and the radial deformation correction coefficient   are both equal to 1.0 in 

equation (24), (34) and (42), and the mean contact stress on each contacted 

thread calculated from the theoretical method and that obtained by FEM are 

compared in Fig. 13. As can be seen in Fig.13 that the theoretical solution is 

close to the result of finite element simulation in single shear plane or double 

shear planes. With increasing of the distance from the nut support surface, the 

thread stress decreases gradually. The thread stress in single shear plane bolted 

joint is greater than that in double shear planes bolted joint, and the thread 

stress of the three threads near the nut support surface in single shear plane 

bolted joint is significantly larger than that in the double shear planes, which is 

consistent in the theoretical analysis. However, according to Fig. 13 and Tab. 6, 

the maximum error occurs at the third thread whether it is single shear plane or 

double shear planes bolted joint. In the third thread, the theoretical and 

analytical results of single shear plane bolted joint are 238MPa and 202MPa, 

and the relative error is 18%. The theoretical and simulation results of double 

shear planes are 256MPa and 211MPa, and the relative error is 21%. 
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Fig. 14 Comparison of deformation correction coefficient 

 

Table 7  

Ratio of theoretical and simulation results on each thread under bolt preload and combined load 

Thread 

number 

Theoretical results/FEM results under bolt preload Theoretical results/FEM results under combined load 

λ=0.7 λ=0.8 λ=0.9 λ=1.0 ξ=0.6 ξ=0.8 ξ=1.0 

1 1.13  1.07  1.04  1.03  1.07  1.06  1.05  

2 1.10  1.08  1.05  1.03  1.15  1.13  1.11  

3 1.08  1.08  1.08  1.08  1.17  1.17  1.17  

4 1.07  1.10  1.12  1.15  1.18  1.19  1.21  

5 1.04  1.10  1.15  1.19  1.20  1.22  1.24  

6 1.02  1.11  1.18  1.25  1.22  1.26  1.29  

7 1.01  1.11  1.20  1.28  1.25  1.29  1.34  

 
In order to get more accurate stress on the thread surface, the correction 

coefficient of the axial deformation of the thread and the correction coefficient 

of the radial deformation proposed in the theory of this paper are discussed as a 

single shear model. Fig. 14a shows the effect of the axial deformation 

correction coefficient on the theoretical results under bolt preload with 0.7Fy 

(53kN). As can be seen in the figure that the mean contact stress near the third 

thread under different deformation coefficients is almost equal, and the thread 

stress calculated by theoretical method is slightly larger than the result of the 

finite element simulation. In order to facilitate the description of the mean 

contact stress of the thread considered axial deformation correction coefficient, 

the ratio of theoretical results and simulation results are listed in Tab. 7. It can 

be seen that when λ equal to 0.7, the ratio exhibits a tendency to decay as the 

distance from the nut support surface increases, and finally the ratio 

approaches to 1.0. Which means that the thread stress calculated by theoretical 

method can better describe the thread stress away from the nut support surface. 

When λ is equal to 0.8, 0.9 or 1.0, the ratio shows an increasing trend as the 

distance from the nut support surface increases, and the ratio approaches to 1.0 

near the nut support surface. Which means that the thread stress calculated by 

theoretical method can better describe the thread stress near the nut support 

surface when λ is large. In addition, we can see that the ratios are equal in the 

third thread. Therefore, in the actual projects, different axial deformation 

correction coefficients can be determined as needed. 

Fig. 14b shows the effect of the radial deformation coefficient on the 

theoretical results under combined load (a bolt preload of 0.7%Fy (53kN) and a 

70% critical slippage load of bolt supporting surface(5.6kN)). According to the 

variation law of the axial deformation coefficient of the thread under the 

preload, λ equal to 0.8 are taken as the correction coefficient of the axial load 

in the combined deformation. Similar to the influence law of the axial 

deformation correction coefficient, the mean contact stress of the third thread 

is equal under different radial deformation correction coefficient, and the 

theoretical results are larger than the simulation results. Tab. 7 also listed the 

ratio to the finite element simulation results under different radial deformation 

correction coefficients. As can be seen in the table, the ratio is equal in the 

third thread which is same as the axial deformation coefficient. Meanwhile, the 
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corrected results are coincided with the FEM results much more better near the 

nut support surface. The difference is that the ratio increases with the increase 

of the distance from the nut under all the three radial deformation correction 

coefficients. Therefore, the stress of each thread can be obtained more 

accurately by reasonably selection of the axial deformation correction 

coefficient and the radial deformation correction coefficient. 

 

5.  Influence of bolt critical loosening load 

 

It can be found that the bolted joint critical loosening load is related to 

many parameters in the theoretical method, such as bolt preload, friction 

coefficient of thread surface, bolt clamping length and shear plane number. In 

this paper the influence of these parameters on the critical loosening load are 

discussed, and the minimum critical loosening load in each thread are 

illustrated. 

Fig. 15 shows the minimum critical loosening load for the thread under 

30% (23kN), 50% (38kN), 70% (53kN) and 90% (68kN) bolt preload. It can be 

seen that the critical loosening load of the thread near the nut support surface is 

the smallest, and the minimum critical loosening load of the thread increases as 

the distance from the nut support surface increases. Therefore, the thread near 

the nut support surface is more prone to loosening under transverse load. The 

minimum critical loosening loads of the first thread are 1.82kN, 3.01kN, 4.19kN 

and 5.38kN respectively. The minimum critical loosening loads of the last 

thread are 2.24kN, 3.70kN, 5.15kN and 6.61kN respectively. It can be seen that 

as the preload increases, the minimum critical loosening load increases. 

However, the variation in the critical loosening load of the thread near the 

support surface is less than that away from the support surface. 

Fig. 16 shows the minimum critical loosening load of the thread with 

different friction coefficient of the threaded surface, such as 0.25, 0.20, 0.15, 

0.10. Similar to the influence of bolt preload, as increasing of the friction 

coefficient of the thread surface, the critical loosening load of the thread also 

increases. The minimum critical loosening loads of the first thread are 2.7kN, 

4.19kN, 5.39kN and 6.39kN, and the minimum critical loosening loads of the 

last thread are 3.33kN, 5.15kN, 6.61kN and 7.83kN. It can be seen that as the 

friction coefficient of the thread surface increases, the critical loosening load of 

each thread also increases greatly, and the minimum critical loosening load of 

the thread away from the nut support surface is more affected. 

Fig. 17 shows the minimum critical loosening load for each thread with bolt 

clamping lengths 6mm, 12mm, 18mm and 24mm. As can be seen in Fig. 17, the 

change in the bolted clamp length has almost the same effect on the minimum 

critical loosening load of each thread. At the same time, as the clamping length 

increases, the critical loosening load of the thread gradually decreases. The 

minimum critical loosening loads of the first thread are 4.70kN, 4.43kN, 4.19kN 

and 3.98kN, and the minimum critical loosening loads of the last thread are 

5.81kN, 5.46kN, 5.15kN and 4.88kN. The ratio of the minimum critical 

loosening load is 1.18:1.12:1.05:1. Therefore, the magnitude of the change is 

less than the variation of the clamping length. 

Fig. 18 shows the minimum critical loosening load for single shear plane 

and double shear plane bolted joint. As can be seen in the figure, the critical 

loosening load of the bolted joint will greatly increase with the increasing of 

shear plane number. The ratio of critical loosening load for double shear planes 

and the single shear plane in each thread is 2.178, 2.179, 2.180, 2.182, 2.183, 

2.184 and 2.185. It can be seen that as the distance from the nut support surface 

increases, the critical loosening load of double shear plane has slight increased 

relative to the single shear plane, and the critical loosening load for double shear 

planes is approximately twice that of single shear plane.
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      Fig. 15 Critical loosening load for different preload             Fig. 16 Critical loosening load for different friction coefficients 
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   Fig. 17 Critical loosening load for different clamping lengths      Fig. 18 Critical loosening load for single and double shear plane models 

 

6.  Discussions 

 

In order to study bolt loosening, a new calculation method of critical 

loosening load for bolted joints is presented and modified by finite element 

analysis results in this paper. Theoretical research shows that the critical 

loosening load is determined by the transverse load on the bolted joint, which is 

caused by the axial force of member in transmission towers. However, the axial 

force of member can not be used to analyze the bolted joint self-loosening 

directly as the friction between the gusset plate is ignored in the theoretical 

model. Therefore the critical loosening loads calculated by the presented method 

are relative small compared with the real behavior of bolted joint, and the 

slippage load of bolted joint should be added in practical. 

In the previous research, the distribution of bolt internal force and thread 

load are presented, and it shows that the thread load near the nut support surface 

is large, and the thread load away from the nut support surface is small. 

However, most researches use the finite element method to study the internal 

force and thread load, or establish a mathematical model based on the 

simulation results. Those method is essentially dependent on finite element 

simulation, and it also requires to establish a more accurate and reliable finite 

element model. Some researchers present the critical loosening load of bolted 

joints by experimental tests, and other researchers derived the theoretical 

calculation method based on the assumption of uniform distribution of thread 

load on all effectively engaged threads. However, the actual distribution of 

thread load is considered in the presented theoretical method, which led to more 

accurate critical loosening load of bolted joints. 

The distribution of thread load, the load of bolt shank and the critical 

loosening load of bolted joints can be obtained by the given numerical 

calculation method in this paper. However, the bolted joints in transmission 

towers are often subjected to dynamic loads, which may cause some wear or 

contact surface condition changes, resulting in a large error with actual behavior. 
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Therefore, it is suggested to study the critical loosening load under the dynamic 

load, and carry out the experiment of loosening bolt. Then the theoretical 

method presented in this paper can be better corrected under the dynamic load. 

 
7.  Conclusions 

 

The common transmission tower is a space structure formed by bolts and 

angle steel members. The reliability of bolt connection plays an important role 

in the safety and stability of the transmission tower. bolt connection Loosening 

can affect the safe and stable operation of the transmission tower. In this paper, 

a new theoretical method of critical loosening load of bolt joints is given, the 

distribution of thread stress is calculated, and the influence of structural 

parameters on the critical loosening load is analyzed. The conclusions are as 

following: 

(1) A new theoretical method for the critical loosening load of bolted joint 

is presented, which is verified by finite element simulation, the modification of 

theoretical method are analyzed and correction coefficient are given. 

(2) The maximum stresses of the threads in tangential, normal and radial 

directions are only related to the transverse loads and the maximum value of the 

radial stress for the single shear plane bolted joint in each thread is twice that of 

the double shear planes. 

(3) The thread stress decreases rapidly as the distance from the nut support 

surface increases, and the thread stress of the first thread near the nut support 

surface is much greater than the stress of the last thread away from the nut 

support surface. The loads on the first three threads near the nut support surface 

take up more than 50% of the load on the entire bolt. 

(4) The critical loosening load of the first thread near the nut support 

surface is the smallest. As the distance from the support surface increases, the 

critical loosening load of the thread increasing gradually. 

(5) The increase of the bolt preload, friction coefficient of thread surface, 

and the shear plane number will increase the critical loosening load of the thread, 

which have a greater influence on the last thread away from the nut support 

surface. The increase of the bolt clamping length results in critical loosening 

load reduction, which has the same effects on the effective engagement threads. 
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