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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

The steel frames with dampers added on the top of existing structures would lead to highly non -proportional damped 

systems whose conventional seismic response analysis is substantially time-consuming. This paper aims to propose a real-

mode-based complex mode superposition method (RMCMSM) with high computational efficiency and high accuracy. The 

method transforms the linear combination of complex modes into real modes with complex coefficients.  It significantly 

reduces the time to solve complex eigenvalues and the number of complex operations, and improve computational 

efficiency. An ideal 2-DOFs system is used to investigate the effects of additional dampers in adding stories on modal 

damping ratios, coupling index and the seismic response. A real-world 5-storey structure was further analyzed to 

demonstrate the accuracy and efficiency of the proposed method. The numerical results show that, when the equivalent 

damping ratio of the additional damper increases, the stronger the non-proportionality of the system, the significantly lower 

the seismic response of the top layer. When designing the steel structure for the new storeys, the additional mass should be 

minimized and the natural frequency ratio of the overall structure should remain on the interval between 0.6 and 1.2 so that 

the damping effect of the additional dampers can be fully utilized. Consequently, the overall seismic performance can be 

enhanced.  
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1.  Introduction 

 

Storey-adding with light steel frames on the top of existing structures are 

frequently applied in civil engineering due to their economic and functional 

benefits. These vertically mixed structures are usually non-proportional 

damping matrix systems caused by the irregularity of damping distribution over 

a substructure and a superstructure [1-3]. To improve the earthquake resistant 

performance of the superstructure, viscoelastic dampers would be added to the 

steel frames which further strengthen the coupling degree of the damping matrix 

to form the highly non-proportional damped system [4-6]. 

No pertinent code provisions guide the seismic analysis of such kind of 

structures [7,8]. Although the seismic response of a vertical mixed structure can 

be obtained by direct integration and frequency domain methods, the modal 

superposition method is considered more preferable because it is conceptually 

simple, effective, and convenient to apply the response spectrum to estimate the 

maximum response value. Therefore, most of the research work has been 

focused on decoupling the damping matrix of vertically mixed structures. In 

general, three approaches can be applied to decouple the damping matrix, 

namely, physical decoupling, decoupling by real mode and decoupling by 

complex mode. 

The physical decoupling directly ignores the interaction of the two parts 

and considers substructure and superstructure as two independent systems. In 

this way, each subsystem is modelled with its own damping ratio, thus damping 

irregularity is avoided. The method is reasonable when the mass of the 

superstructure is considerably smaller than that of the substructure. Therefore, 

it can be used to analyze equipment-structure system [9,10]. However, it would 

cause significant errors when the masses of different parts are comparable [11].  

In the second method, decoupling by real mode is to simplify the non-

proportional damping to a proportional one. Usually, the damping ratio is 

assumed to be 2% for steel and 5% for concrete structures. Some engineers set 

uniform damping ratio equal to 2%, which will underestimate the consuming 

energy performance of the concrete part and lead to too conservative results. 

Cronin [12] forced the converted damping matrix to be diagonalized by ignoring 

non-diagonal terms. Huang et al. [13] also used the diagonal term to calculate 

the equivalent modal damping ratio. Papageorgiou and Gantes [14] proposed 

the damping ratio of complex modal analysis as the equivalent modal damping 

ratio of the real mode. Roesset et al. [15] used the energy ratio as the weighting 

and proposed the weighted modal damping ratio. The equivalent uniform 

damping ratio method and the modal strain energy (MSE) method are 

commonly used as approximate procedures for irregular damping 

conditions[16-24]. The essence of these methods can be seen as forced 

diagonalization. It would be very convenient for practical design and give 

reasonable results for systems with weakly non-proportional damping. However, 

for highly non-proportional damping, ignoring the effect of off-diagonal terms 

would cause significant errors [25-26]. In order to improve the accuracy of the 

results, Ibrahimbegovic and Wilson [27], Kim [28] and Aureli [29] proposed 

iterative solution method that consider the effects of off-diagonal terms. 

In the third method, the modal superposition with complex modes has been 

applied to decouple the non-proportional damping matrix. Foss [30] proposed a 

state-space method to obtain the accurate complex modes and well established 

the complex modal superposition method. However, the most prominent 

drawback of accurate modal analysis in state space is that it requires about eight 

times the numerical work of calculating the undamped real mode shapes [27] 

and has hindered the wider application. In fact, the non-proportional damping 

system of vertical mixed structures can be regarded as modified from the 

proportional damping system, so the dynamic characteristics and responses can 

be determined by the perturbation method to improve the calculation efficiency. 

Cha [31] used the modes of an undamped system as a basis to find the first-

order perturbation solution of an arbitrary but weakly non-proportional damped 

system. Hraˇcov [32] used the first-order perturbation method to evaluate the 

complex eigensolutions of a linear proportional system supplemented by a 

viscous damper.  Recently, Pan et al [33] proposed a modal perturbation 

method (MPM) which can be used to analyze the eigenvalue problem of a highly 

non-proportionally damped system.  

The aim of this paper is to propose a method with both computational 

efficiency and precision improved, called a real-mode-based complex mode 

superposition method (RMCMSM)，for seismic response analysis of light-

weight steel storey-adding buildings with additional damping. After obtaining 

the real modes of the undamped system, this method first uses the modal 

perturbation method to express the complex mode as a linear combination of 

real modes. The complex mode superposition method is transformed into the 

real mode superposition method with complex coefficients to improve the 

calculation efficiency. On this basis, the building is simplified as a 2-DOFs 

system, which includes the existing and storey-adding parts idealized as 1-DOF 

respectively, to investigate the influence of additional dampers on the system's 

modal damping ratios, coupling index and the seismic response of the structure. 

And, compared with the traditional real-mode superposition method, the 

influence of off-diagonal elements of the damping matrix on the seismic 

response is discussed. Finally, a real-world 5-storey structure with 4 layers of 

existing structure plus a new layer of steel structure with dampers is used to 

investigate the effect of additional dampers on the seismic response and the 

accuracy and efficiency of the proposed method. 

 

2.  Construction of damping matrix  
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A typical steel frame with dampers adding on existing structure (SFDS) is 

shown in Fig.1. Given the stiffness matrix, mass matrix and damping matix of 

the subsystems of their own, then the total matrix can be expressed as:  

 

     +
a e

m m m=  (1) 

 

       + +
d a e

c c c c=  (2) 

 

     +
a e

k k k=  (3) 

 

in which [m], [c] and [k] are the mass matrix, damping matrix and stiffness 

matrix respectively;  
d

c  represents the contribution of the dampers to the 

total damping matrix; the subscripts a and e denote the subsystems of storey-

adding and existing structure respectively;. the  
i

c  ( ,i a e= ) can be obtained 

by Rayleigh’s method [20], that is: 

 

     i ii i i
c m k = +  (4) 

 

2

1

i m ni

i m n

  

  

   
=   

+   
 (5) 

 

in which 
a

  and 
e

  are the damping ratios of storey-adding and existing 

structure respectively; 
m

  and 
n

  are the two specified reference natural 

frequencies of the complete structure.  

 

 

Fig. 1 A schematic model of SFDS 

 

3.  Formulation for real-mode-based complex mode superposition 

method  

 

3.1. Modal perturbation method for complex eigenvalue  

 

For the steel frames adding on the top of existing structures with N degrees 

of freedom (N-DOFs), the equation of motion under seismic excitation can be 

expressed as in the state space[30]: 

 

        g
A y + B y = F u  (6) 

 

 
 
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 
  
 

0 -
, , ,

0 0 0

u c m k m
y = A B = F =

u m - m

         
=      

         
 (7) 

 

in which  u ,  u and  u are the displacement, velocity and acceleration 

vectors with the dimension 1N   respectively,   is the influence vector 

which represents the displacements resulting from a unit support displacement, 

The related eigenvalue equation is:  

 

   ( )   0A + B =   (8) 

 

in which   is complex eigenvalue，and    is their associated complex 

mode shapes. For a system with N-DOFs, there are N pairs of conjugate eigen-
values and associated eigenvectors. However, the seismic response would be 

accurately approximated by a smaller number of pairs r of modes in the complex 

modal superposition. The aim of the MPM is to obtain the first r eigenvalues 

j
 and their associated eigenvectors  j (j=1, 2, …, r). Then, the conjugate 

eigenvalues and eigenvectors can be directly calculated by =
j r j

 
+

, and 

   j r j
 

+
=  (j=1, 2, …, N). 

In the MPM [33], the corresponding equivalent proportionally damped sys-
tem of the non-proportional damped system is defined by [m], [k] and a uncou-

pled modal damping ratio 
j

 , which is estimated by the modal strain energy 

method (MSEM) [34], that is,  

 

    
=

2

T

j j

j

j j

c

M

 



 (9) 

 

in which the 
j

  and  j  (j=1, 2, …, n) are the jth undamped circular natural 

frequencies and its associated modes;     =
T

j j j
M m   is the modal mass. 

Then, the complex eigenvalues and their associated complex mode shapes of 

the equivalent proportionally damped system can be expressed as: 

 

 
 

 
21 ,

j

j j j j j j

j j

s i =
s


    



 
 

= − + −  
  

(j=1, 2, …, n) (10) 

 

For j>n, 
j j n

s s
−

= ,    j-nj
=  . 1i = −  is the unit complex.  

The jth complex eigenvalue and its associated mode of Eq. (8) are related to 

those of the corresponding proportionally damped system in following ways: 

 

j j j
s s = +  (11) 

 

 
 

 
      

2

1,

=
n

j

j j k kj j

k k j
j j

q q


   
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 
 

= + = 
  

  (12) 

 

 
   

   
=

s s

 


 

 
 
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 (13) 

 

in which 
j

s  is the eigenvalue perturbation;  j  is the complex modes; 
j

q  

is a complex coefficient; *  denotes the * is a diagonal matrix;    is a N×n 

mode matrix composed of the first n real modes  j . Defining: 
 

/
j j

k

kj

s s k j
x

q k j

 =
= 


 (14) 

 

In MPM, the  x  can be obtained by solving the algebraic equation: 

 

   
   

   
   

 
 

 
11 12 11 12 1

21 22 21 22 2

j

D D E E R
+ x x =

D D E E R

       
              

 (15) 

 

where  11
D ,  12

D ,  21
D ,  22

D ,  11
E ,  12

E ,  21
E  and  22

E  

are all n×n square matrices;  1R  and  2
R  are n×1 vectors;  x  are 2n×1 

vectors. The above n×n square matrices can be expressed as:  

 

    2 2

11 0

1
2

j

j

D = C M s M s
s


=

+ + −  (16) 

 

     12 21
D D C M s s= = + +  (17) 
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    2 2

22

1
2

j

D C M s M s
s

= + + −  (18) 

 

   11 00
2

jj
E C M s

==
= +  (19) 

 

   12
E C M s s= + +  (20) 

 

   21 00
2

jj
E C M s s

==
= + +  (21) 

 

   22
2E C M s= +  (22) 

 

in which       
T

C c = ;     
T

M m = ;  
0j

C
=

 and 
0j

M
=

 denote 

that the jth column of  C  and M  are zero. The n×1 vectors are given be-

low: 

 

 
2 2

1 1 ( 1) ( 1)
2

T

j j

j j j jj j j j j j nj

j

s
R C C C s M M C C

s


− +

 − 
= − + + 

  

L L  (23) 

 

   2 1 ( 1) ( 1)
( )

T

j j j jj j j j j j nj
R C C C s s M C C

− +
= − + +L L  (24) 

 

Once {x} is determined by Eq. (15), the jth eigenvalue and its associated 

complex mode of vibration of the non-classically damped system can be ob-
tained by Eqs. (11) and (12). Then, the jth pseudo undamped natural frequency 

j
 and damping ratio 

j
  can be expressed as:  

 

, Re( ) /
j j j j j

    = = −  (25) 

 

 jq  can be expressed as: 

 

 =
uj

j

lj

q
q

q

  
 
  

 (26) 

 

in which  uj
q and  lj

q  are the upper and lower n elements respectively. 

Then, the jth complex mode  j  can be expressed as the linear combination 

of real modes, that is: 

 

    ˆ=
j j

q   (27) 

 

     ˆ
j uj lj

q q q= +  (28) 

 

Taking j from 1 to r in turn, the complex mode matrix    can be ex-

pressed as: 

 

    ˆ= q   (29) 

 

in which    is a N×r matrix.  

 

3.2. Real-mode-based complex mode superposition method on seismic response  

 

By complex mode superposition, the state vector  y  in state equation (6) 

can be expanded in terms of complex eigenvectors  j , that is: 

 

 
 

 
 

1

= 2Re
r

j j

j

u
y z

u


=

    
=   

    
  (30) 

 

Then, the uncoupled equation for the jth (j=1, 2, …, r) complex mode of 

vibration is: 

 

( )
j j j j g

z z u t − =  (31) 

 

    
T

- /
j j j

m a  =  (32) 

 

where     
T

j j j
a A = . By using Eqs. (27) and (12), 

j
  and 

j
a  can be 

expressed as: 

 

      ˆ /
T T

j j j
= q m a  −  (33) 

 

       
T T

j j j
a q A q =  (34) 

 

By substituting Eq. (13) into Eq. (34), 
j

a  can be rewritten as: 

 

     ( )
1

ˆ ˆ ˆ ˆ ˆ2
n

T

j j j i uij i lij i ij

i

a q C q s q s q M q
=

= + +  (35) 

 

The solution of Eq. (31) can be solved by Duhamel’s integration [35,36] or 

frequency domain method [37,38], and a numerical procedure based on Duha-

mel’s integration was adopted in this paper. Once zj is determined, the displace-

ment can be expressed as: 

 

     ( )ˆ2Reu q z=  (36) 

 

It can be seen from Eqs. (33), (35) and (36) that the real-mode-based com-

plex mode superposition method (RMCMSM) reduces the number of times of 

complex multiplication. For example, aj which needs 2 2N N  times of com-

plex multiplication in the state-space method, needs only n n n +  times in 

the proposed method. In addition, the displacement of each step in Eq. (36) of 

complex multiplication numbers is reduced from N r  to n r . Usually, n 

is far less than N so the RMCMSM will improve the calculation efficiency sig-

nificantly. 

 

3.3. The algorithm workflow 

 

In order to make the procedure of the algorithm clearer, the workflow of 

the proposed method is shown in Fig. 2. 

The algorithm is executed in five steps:  

Step 1: Construction of mass matrix  m , damping matrix  c  and stiffness 

matrix  k  from Eq. (1), Eq. (2)and Eq. (3).  

Step 2: Calculate the first n undamped circular natural frequencies 
j

  

and its associated real modes  j . Then, calculate the modal damping matrix 

 C , and obtain the modal damping ratio 
j

 , the complex eigenvalues 
j

s

and their associated complex mode shapes  j  of the equivalent 

proportionally damped system by Eq. (9) and Eq. (10), and set j=1. 

Step 3: Form the 
ij

D   , 
ij

E   , and  iR (i, j=1,2), then obtain  x by 

Eq. (15),  

Step 4: Based on  x , obtain the  j
  by Eq. (11) and  ˆ

j
q  by Eq. (28) . 

Then, set j=j+1, and go back to Step 3 until j=r which r is the desirable highest 

mode. 

Step 5: Obtain 
j

a , j
  by Eq. (35) and Eq. (33), then taking j from 1 to r 

in turn can solve  jz  from Eq. (31). 

Step 6: In the end, the displacement  u  can be calculated by Eq. (36). 
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Fig. 2 Flowchart of the proposed method 

 

4.  Parametric study  

 

An ideal MDOF storey-adding structure with dampers as shown in Fig.1 

can be approximately simplified as an equivalent 2-DOFs system in Fig.3, fol-

lowing Huang[20] and Papageorgiou Gantes[14]. Firstly, two submatrices [k]i 

and [m]i, where i = a, e, each representing the contribution of the corresponding 

part of the structure to the total structure matrix, can be expressed as: 

 

   
0

,
0

e

e a
a

m
m m

m

  
= =   
   

 (37) 

 

   
0

,
0 0

a ae

e a
a a

k kk
k k

k k

−  
= =   

−   
 (38) 

 

 

Fig. 3 Equivalent 2-DOFs structure 

 

The damping ratios of two subsytems are defined as 0.02
a

 =  and 

0.05
e

 = . A damper in the upper structure denotes additional energy consump-

tion. The parameters of the dampers are expressed as: 

 

2
d d a a

c m =  (39) 

 

  d d

d
d d

c c
c

c c

− 
=  

− 
 (40) 

 

in which 
d

  is the equivalent damping ratio of the damper. In order to inves-

tigate the effect of the dampers and the properties of the two subsystems, three 
parameters are defined: 

 

, ,a a a d
m

e e e

m
R R R

m
 

  

 

+
= = =  (41) 

 

Without loss of generality, the mechanical parameters of the system are 

chosen as me=4×106kg, ke=1×106kN/m. Then, the other parameters can be de-

rived as: 

 
2, , 2( )a m e a e m d e a a am R m k R k R c R k m  = = = −  (42) 

 

For non-proportionally damped systems, the modal damping matrix  C  

is not diagonal. The coupling index α can be expressed as [39]: 

 

2

=max( )    ( )lk

ll kk

C
l k

C C
   (43) 

 

which represents the degree of non-proportional damping. 

 

4.1. Influences of dampers on modal damping ratios  

 

Normally, the mass of the added layer structure is less than the mass of the 
main structure, without loss of generality. The following mainly analyzes the 

change law of the modal damping ratio of the system when Rm is equal to 1/8, 

1/4 and 1/2 respectively. Table 1 lists the undamped natural frequencies of var-

ious Rm when 2 / 2R = . 

 

Table 1 

The undamped natural frequencies (Hz) of the 2-DOFs system  

No. of modes 
Rm 

1/8 1/4 1/2 

1 1.687 1.617 1.510 

2 2.657 2.773 2.968 

 

The modal damping ratios which are calculated by MPM and MSEM over 

the ( R
- R

) plane are shown in Fig. 4, Fig. 5 and Fig. 6. In addition, the cou-

pling index α is also depicted to illustrate the degree of non-proportional damp-

ing. =0.4R
 represents that there is no damper in the system. In the MPM, all 

the 4 modes  j of the 2-DOFs system are used in Eq. (12) to obtain the exact 

complex eigenvector  j by MPM [33]. It can be seen that: 1) When 

0.6 1.2R  , the damper would significantly affect the modal damping ratios 

and the coupling index. It means that the damper would be sensitive to the 

damping characteristics of the system when the natural frequency of the super-

structure and substructure is close. 2) Once 1.5R  , 
1


)

 is close to 0.05 and 

2

)

 is close to 0.05R
, and when 0.4R  , 

1

)

 is close to 0.05R
and  

2

)

 is close to 0.05. It represents that when the natural frequency difference 

between the two subsystems is large, 
1


)

 is determined by the lower natural 

frequency subsystem while the 
2


)

 is determined by the higher one. 4) When 

R
 is larger than 1, coupling index α increases with the increase of additional 

damping. 5) The influence of mass ratio 
m

R  on the damping ratios and cou-

pling index is not significant. 6) The damper would cause a bigger coupling 

index α. With increasing 
d

 , both modal damping ratios increase, and those 

obtained by MSEM shows more obvious errors. 
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(a)modal damping ratio of the first mode 1 (b)modal damping ratio of the second mode 2 

 

(c) coupling index α 

Fig. 4 Modal damping ratios and coupling index of the 2-DOFs structure (Rm=1/8) 

 

(a)modal damping ratio of the first mode 1 (b)modal damping ratio of the second mode 2 

 

(c) coupling index α 

Fig. 5 Modal damping ratios and coupling index of the 2-DOFs structure (Rm =1/4) 

 

(a)modal damping ratio of the first mode 1 (b)modal damping ratio of the second mode 2 

 

(c) coupling index α 

Fig. 6 Modal damping ratios and coupling index of the 2-DOFs structure (Rm =1/2) 

 

4.2. Influences of dampers on seismic response  

 

The El Centro wave and Qianan wave which are classified to ⅠI site and I 

site respectively, with different main frequencies, are selected to investigate the 

influence of dampers on seismic response. The El Centro wave recorded in the 

California earthquake in May 1940 in the N-S direction, whose time history and 

Fourier spectrum are shown in Figure 7(a) and (b), consistency. The Qianan 

wave and its Fourier spectrum of the aftershock of the Tangshan earthquake in 

1976 are shown in Fig. 7(c) and (d) , consistency. In addition, the smoothing of 

FFT is also shown to obtain predominant frequency. It can be seen that the pre-

dominant frequencies are 1.7 Hz of El Centro wave and 4.8Hz of Qianan wave. 

 

 

(a) acceleration time history of El Centro wave (b) Fourier spectrum of El Centro wave 

 

(c) acceleration time history of Qianan wave   (d) Fourier spectrum of Qianan wave  

Fig. 7 The acceleration time history and corresponding Fourier spectrum of input wave 

 

The displacement amplitudes are calculated by RMCMSM, as shown in Fig. 
8 and Fig. 9. Since the frequencies and modes obtained by MPM are accurate, 

the calculation results of RMCMSM using all modes are also accurate. When 

0.6 1.2R  , 5.0R  , with the increase of Rζ, the u2 contour is a dense 

vertical line, which indicates that in this parameter range, the damper has an 

obvious seismic mitigation on the top layer. On the contrary, the contour of u1 

is nearly horizontal, which indicates that u1 is mainly affected by R
, while the 

effect of additional damping is not significant. The increase of Rm will increase 

the inertial force of the system, which will cause both the reactions of u1 and u2 

to increase. Therefore, when designing the storey-adding steel structure, the 
mass of the additional layer should be minimized. 

When 0.4R  , a slight decrease of R
will cause a sharp increase in u2. 

Moreover, the increasing of the additional damping will not cause an obvious 
effect on the decreasing of u2. This shows that if the stiffness of the added-story 

structure is too low, it will make the displacement of the superstructure too large 

to control. This situation should be avoided in the design. When 1.5R  , it is 

essential to increase the cross-sectional size of the structural elements for seis-

mic design, which will increase the cost of the structure. When 0.6 1.2R  , 

the damping effect of the damper can be fully exerted and the structure will have 
both good seismic performance and economy. 

At the same time, the frequency content of the input seismic wave would 

affect the seismic mitigation effect of the damper. Compared with the Qianan 

wave, the damper under the El Centro wave can reduce u2 in a wider range of

R
. The prominent frequency of the El Centro wave is close to the first-order 

natural frequency of the system. The prominent frequency of Qianan wave is 

close to second-order. Since the response of the structure is mainly controlled 

by the first mode, the damper has a better seismic mitigation effect on the El 
Centro wave. 

If the conventional real mode superposition method (RMSM) is used to an-

alyze the seismic response of the structure ignoring the off-diagonal terms of 

the damping matrix and using MSEM damping ratios, there will be certain er-

rors. The relative error e can be expressed into: 

 

*

*
100%

r

r r
e

r

−
=   (44) 

 

in which r and r* are the approximate and exact solution. 

Fig. 10 and Fig. 11 show that the relative errors of displacements which are 

calculated by RMSM. Comparing with Fig. 4, Fig. 5 and Fig. 6, it can be seen 

that the relative errors of displacements would increase when the value of the 

coupling index α increases. Furthermore, the errors are obviously influenced by 

different types of seismic waves. When α>0.2, the relative errors by RMSM 

would be more than 10%.  
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(a) Rm=1/8, (El Centro wave)            (b) Rm =1/4 (El Centro wave) 

 

(c) Rm =1/2 (El Centro wave)            (d) Rm =1/8 (Qianan wave) 

 

(e) Rm =1/4 (Qianan wave)             (f) Rm =1/2 (Qianan wave) 

Fig. 8 The displacement amplitudes of u1 (mm) 

 

 

(a) Rm=1/8, (El Centro wave)            (b) Rm =1/4 (El Centro wave) 

 

(c) Rm =1/2 (El Centro wave)            (d) Rm =1/8 (Qianan wave) 

 

(e) Rm =1/4 (Qianan wave)             (f) Rm =1/2 (Qianan wave) 

Fig. 9 The displacement amplitudes of u2 (mm) 

 

 

 

(a) Rm=1/8, (El Centro wave)            (b) Rm =1/4 (El Centro wave) 

 

(c) Rm =1/2 (El Centro wave)            (d) Rm =1/8 (Qianan wave) 

 

(e) Rm =1/4 (Qianan wave)             (f) Rm =1/2 (Qianan wave) 

Fig. 10 The relative errors of displacement u1 (%) 

 

 

(a) Rm=1/8, (El Centro wave)            (b) Rm =1/4 (El Centro wave) 

 

(c) Rm =1/2 (El Centro wave)            (d) Rm =1/8 (Qianan wave) 

 

(e) Rm =1/4 (Qianan wave)             (f) Rm =1/2 (Qianan wave) 

Fig. 11 The relative errors of displacement u2 (%) 

 

5.  Practical applications of the proposed method  

 

A 2-DOFs structure is used to illustrate the proposed method and discuss 
the effect of additional damping on the seismic response of the structure. The 



Jin-Peng Tan et al.  558 

 

time consumed for the real-mode-based complex superposition and direct com-

plex superposition will not make a significant difference. To fully explore the 
potential of the proposed method in engineering practices, an office building of 

a 4-storey concrete frame structure with an additional 6m high steel structure on 

top, as shown in Fig 12, is studied. The material of the existing structure is C30 

concrete, whose material parameters are: density c=2500kg/m3, modulus of 

elasticity Ec=3×1010 Pa and damping ratio 
c
=0.05 . In addition to the self-

weight of the frame structure, the applied load is 10.5 kN/m for each concrete 
beam element. The material of the new steel structure is Q345, whose material 

parameters are: s=7800kg/m3, Es=2×1011 Pa and 
s
=0.02 . The applied load 

is 9.5kN/m for each steel beam element. In this instance, the mass ratio of the 

upper steel structure and the lower concrete structure 0.164
m

R = .  

 

 

Fig. 12 An office building with mixed steel-concrete structure (unit: mm) 

 
In order to improve the earthquake resistant performance of the storey-

adding structure, the designed columns of the superstructure are 300×300×

8mm square steel pipe. The frequency ratio R
of the upper steel structure and 

the lower concrete structure is 0.8. There are two dampers applied to the steel 

structure with damping constant cd equal to 3.6×104N.s/m and therefore 4R = . 

The finite element model of the frame structure contains 28 DOFs. The 

additional loads are transformed into equivalent additional masses to represent 
the inertial force. 

Table 2 lists the accumulated mass participating factor am along the 

horizontal direction. Obviously, am of the first 10 modes exceed 90% and 

therefore 10 pairs of complex modes are used in RMCMSM and 10 real modes 

are used in RMSM. To calculate the Rayleigh coefficients by Eq. (5), the 1st and 

10th natural frequencies of the complete structure are used as the the two 

specfied reference frequencies. Then, the damping matrix of the system is 

constructed by Eq. (2). The coupling index α of the structure is 0.51 for the 

structure with additional dampers (ADS). The storey-adding steel frame without 

dampers (NDS), whose coupling index α equals 0.15, are comparatively 

investigated. 

 

Table 2 

Accumulated of mass participating factor am (%) 

Modes 1 2 3 4 5 

am 24.93 42.23 47.18 49.28 66.95 

Modes 6 7 8 9 10 

am 66.95 67.66 85.02 85.02 95.62 

 

5.1. MPM for eigenvalue problem  

 

For practical engineering, the incomplete set of undamped modes, which 

includes 8 additional modes [40], will be used in Eq. (12). According to the 

results listed in Table 2, the first 10 pairs of complex eigenvalues of the non-

proportional damped system are used in the mode superposition to calculate the 

seismic response. Then, the first 18 undamped modes are used in MPM. Table 

3 lists the first 10 pseudo undamped natural frequencies and damping ratios by 

MPM with n=18 for the structure with and without additional dampers. For 

comparison, the results obtained by the MSEM and exact solution and are also 

listed. The relative errors of natural frequencies and damping ratios are shown 

in Table 4. It can be seen that the errors of natural frequencies and damping 

ratios obtained by the MPM are always less than 0.015%. The relative errors of 

those obtained by the MSEM would be less than 1.267%. 

 

Table 3 

The natural frequencies (Hz) and damping ratios of the frame system 

Mode 

ADS NDS 

Natural frequencies Damping ratios Natural frequencies Damping ratios 

Exact MPM MSEM Exact MPM MSEM Exact MPM MSEM Exact MPM MSEM 

1 1.690 1.690 1.669 0.112 0.112 0.113 1.669 1.669 1.669 0.026 0.026 0.026 

2 3.084 3.084 3.117 0.139 0.139 0.138 3.117 3.117 3.117 0.025 0.025 0.025 

3 8.957 8.957 8.972 0.038 0.038 0.038 8.972 8.972 8.972 0.023 0.023 0.023 

4 17.581 17.580 17.584 0.036 0.036 0.036 17.584 17.584 17.584 0.033 0.033 0.033 

5 21.884 21.883 21.877 0.025 0.025 0.025 21.884 21.883 21.877 0.025 0.025 0.025 

6 21.915 21.915 21.908 0.025 0.025 0.025 21.915 21.915 21.908 0.025 0.025 0.025 

7 26.746 26.746 26.746 0.047 0.047 0.047 26.746 26.746 26.746 0.047 0.047 0.047 

8 28.403 28.403 28.404 0.050 0.050 0.050 28.403 28.403 28.404 0.050 0.050 0.050 

9 43.764 43.761 43.774 0.059 0.059 0.059 43.764 43.761 43.774 0.059 0.059 0.059 

10 43.784 43.781 43.794 0.059 0.059 0.059 43.784 43.781 43.794 0.059 0.059 0.059 

 

Table 4 

The relative errors (%) of natural frequencies and damping ratios of the frame system  

Mode 

ADS NDS 

Natural frequencies Damping ratios Natural frequencies Damping ratios 

MPM MSEM MPM MSEM MPM MSEM MPM MSEM 

1 0.001 1.267 0.002 0.166 0.000 0.015 0.000 0.006 

2 0.002 1.093 0.005 1.086 0.000 0.014 0.000 0.003 

3 0.001 0.163 0.005 0.359 0.000 0.000 0.000 0.000 

4 0.000 0.019 0.001 0.023 0.000 0.000 0.000 0.000 

5 0.003 0.032 0.000 0.043 0.003 0.032 0.000 0.043 

6 0.003 0.032 0.000 0.043 0.003 0.032 0.000 0.043 

7 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.007 0.022 0.015 0.017 0.007 0.022 0.015 0.017 

10 0.007 0.022 0.015 0.017 0.007 0.022 0.015 0.017 
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5.2. Discussion on results of seismic response  

 

The maximum horizontal displacements uimax, and inter-story drift angles 

max 1 max
/

i i i i
u u h

−
= −  of the five floors under the El Centro and Qianan wave 

excitations, are respectively shown in Fig. 13 and Fig. 14. The hi is the height 

of the ith storey. Based on the previous results, 10 pairs of complex modes were 

included in the solution of Eq. (30) by the RMCMSM. The 10 undamped modes 
were used by the RMSM. The exact solution is the result of the complex mode 

superposition obtained by the state-space method based on complete complex 

modes. 

The effect of dampers on the seismic response can be shown from Figs. 13 

and 14. The displacement amplitudes of the top layer decreased from 29.85mm 

to 20.41mm and from 6.21mm to 4.78mm under El Centro and Qianan excita-

tions respectively; the inter-story drift angles decreased from 1/239 to 1/395 and 

from 1/1000 to 1/1408 under El Centro and Qianan excitations respectively.  

From the viewpoint of accuracy, the maximum horizontal displacements 

and inter-story drift angles obtained by RMCMSM almost coincided with those 

by exact solution. However, the discrepancies between the results of RMSM 

and those of exact solution are obvious, whether the dampers are applied or not. 

The relative errors of peak response are shown in Table 5 and Table 6. The 

errors of the RMCMSM are all less than 1.261%. However, the errors of the 

RMSM would reach 25.850% for the system with dampers and 12.450% for the 

system without dampers, which shows that the RMSM may cause significant 

errors for vertically mixed structures whether dampers are applied or not.  

As can be seen from Table 4, despite the fact that the errors of natural fre-

quencies and damping ratios are tiny, the RMSM would nonetheless cause sig-

nificant errors due to ignoring the effect of the imaginary part of complex modes 

of the non-proportional damping. It means that the calculation accuracy of the 

RMCMSM is significantly higher than that of the RMSM. 

 

 

(a) Maximum lateral displacements uimax  (b) Maximum inter-story drift angles 
maxi

  

Fig. 13 Seismic responses of the office building under El Centro wave 

 

 

(a) Maximum lateral displacements uimax  (b) Maximum inter-story drift angles 
maxi

  

Fig. 14 Seismic responses of the office building under Qianan wave 

Table 5 

The relative errors (%) of maximum horizontal displacements and inter-story drift angles of ADS  

Layers 

RMCMSM RMSM 

El Centro Qianan El Centro Qianan 

u
e  e  

u
e  e  

u
e  e  

u
e  e  

1 0.290 0.290 1.109 1.106 20.597 20.598 3.964 3.961 

2 0.429 0.623 0.888 0.952 19.096 18.400 9.384 10.574 

3 0.573 0.507 0.590 0.874 18.102 17.200 14.651 25.850 

4 0.552 0.507 0.402 0.674 17.120 12.243 24.526 13.555 

5 0.510 0.652 0.175 0.346 4.582 6.349 9.850 7.769 

 

Table 6 

The relative errors (%) of maximum horizontal displacements and inter-story drift angles of NDS  

Layers 

RMCMSM RMSM 

El Centro Qianan El Centro Qianan 

u
e  e  

u
e  e  

u
e  e  

u
e  e  

1 0.956  0.955  0.938  0.938  6.393  6.393  8.600  8.599  

2 0.729  0.651  0.435  0.163  6.685  6.165  2.670  1.921  

3 0.717  1.261  0.129  0.426  3.440  1.882  3.172  1.378  

4 0.547  0.461  0.335  1.079  1.082  1.951  4.407  12.450  

5 0.359  0.622  0.141  0.282  1.163  2.105  2.891  1.204  

 

5.3. Computational efficiency of RMCMSM 

 

The RMCMSM uses the MPM to solve the characteristic equation, which 

is more efficient than the state-space method. Meanwhile, the complex modes 
of the proposed method are linearly combined with real modes, which improves 

the calculation efficiency due to the reduction of complex calculations and di-

mensions of the matrices. Table 7 compares the computation time of the 
RMCMSM and the state-space method with 10 pairs of complex modes for the 

5-storey vertically mixed structure under excitation of El Centro wave. In Table 

7, T1 denotes the time to solve the characteristic equation, T2 denotes the time 

to solve parameters j
  and j

a , T3 denotes the time to solve j
z  in Eq. (31), 

T4 denotes the time to solve Eq. (30) in the state-space method and Eq. (36) in 

RMCMSM and Ta is the total calculation time.  

It can be seen that the time consumed by MPM to solve the characteristic 
equation is less than the time for the state-space method to solve the complex 

characteristic equation directly. The computational efficiency of the proposed  

RMCMSM is also higher than that of the state-space method for the calculation 

of parameters j
  and j

a . Two methods consume the same amount of time 

to solve j
z  in Eq. (31) for the same calculation process. However, T1 and T2 

will increase dramatically when the number of degrees of freedom N increases, 

which will significantly amplify the advantages of the proposed method. There-

fore, the RMCMSM outperforms the state-space method when considering both 
the efficiency and accuracy for the vertically mixed structures with additional 

dampers. 

 

Table 7 

Calculation time (ms)  

Methods T1 T2 T3 T4 Ta 

State-space method 1.72 0.08 1.83 0.04 3.67 

RMCMSM 1.12 0.03 1.83 0.03 3.01 

 

1

2

3

4

5

0 6 12 18 24 30

ui max (mm)

F
lo

o
r 

n
u
m

b
er

 Exact solution of ADS

 RMCMSM of ADS

 RMSM of ADS

 Exact solution of NDS

 RMCMSM of NDS

 RMSM of NDS

1

2

3

4

5

0.0 1.5 3.0 4.5

i max (10-3)

F
lo

o
r 

n
u
m

b
er

 Exact solution of ADS

 RMCMSM of ADS

 RMSM of ADS

 Exact solution of NDS

 RMCMSM of NDS

 RMSM of NDS

1

2

3

4

5

0 2 4 6 8

ui max (mm)
F

lo
o
r 

n
u
m

b
er

 Exact solution of ADS

 RMCMSM of ADS

 RMSM of ADS

 Exact solution of NDS

 RMCMSM of NDS

 RMSM of NDS

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

i max (10-3)

F
lo

o
r 

n
u
m

b
er  Exact solution of ADS

 RMCMSM of ADS

 RMSM of ADS

 Exact solution of NDS

 RMCMSM of NDS

 RMSM of NDS



Jin-Peng Tan et al.  560 

 

6.  Conclusions  

 

Light steel frames added on existing structures are typical vertically mixed 

structures. For improving the seismic resistant performance, dampers are used 

in the steel frame which make the damping more highly non-proportional. In 

this paper, a real-mode-based complex mode superposition method with high 

accuracy and high efficiency is proposed to analyze the seismic response of non-

proportional damped structures. Based on extensive analyses and numerical re-

sults, the following conclusions can be drawn:  

1)The seismic responses obtained by the proposed RMCMSM almost co-

incided with those by exact solution. The RMCMSM reduces the calculation 

time of complex eigenproblem and the number of times of complex multiplica-

tion so that its time consumed is less than that of the state-space method. In 

general, the proposed method takes into account the calculation efficiency and 

accuracy and is suitable for seismic response analysis of vertically mixed struc-

tures with dampers. However, the RMSM ignore the effects of off-diagonal 

terms of the damping matrix and the effect of the imaginary part of complex 

modes to cause also the errors.  

2) In general, the mass of the added layer of structure is less than that of the 

main structure, when 0.4R   or >1.5R
, 

1

)

 is determined by the lower 

natural frequency subsystem and 
2


)

 is determined by the higher counterpart. 

When 0.6 1.2R  , the system shows obvious coupling effect that the 

damper would significantly affect the modal damping ratios and the coupling 

index. In addition, a higher Rζ indicates higher modal damping ratios.  

3) The increase of Rm will increase the reaction of u1 and u2, so the mass of 
the additional layer should be minimized when designing the storey-adding steel 

structure. Moreover, when 0.6 1.2R  , the effect of the damper on damping 

can be fully exerted so that a structural design with good seismic performance 
and economy can be achieved. 
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