ULTIMATE STRENGTH, DUCTILITY, AND FAILURE MODE OF HIGH-STRENGTH FRICTIONAL BOLTED JOINTS MADE OF HIGH-STRENGTH STEEL

Zi-Ce Qin¹, H. Moriyama^{2,*}, T. Yamaguchi³, M. Shigeishi⁴, Yu-Yue Xing¹ and A. Hashimoto⁵

¹ Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
 ² Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
 ³ Department of Civil Engineering, Osaka Metropolitan University, Osaka, Japan
 ⁴ Department of Civil and Architectural Engineering, Kumamoto University, Kumamoto, Japan
 ⁵ Technical Division, Faculty of Engineering, Kumamoto University, Kumamoto, Japan
 * (Corresponding author: E-mail: morivama.hitoshi@tokushima-u.ac.jp)

ABSTRACT

Further structural rationalization of steel bridges such as weight reduction of members can be realized by using high-strength steel. However, owing to the high yield-to-tensile strength ratio, failure of connected members occurs before the members in the gross area are plastic-deformed sufficiently. In this study, tensile tests of frictional bolted joints with various geometrical configurations and grades of plates and bolts were conducted to compare the failure modes of high-strength and mild steel joints and to investigate the relationship among ultimate strength, ductility, and failure mode. The results indicate that the failure modes of high-strength steel joints were the same as those of mild steel joints and can be almost classified with the respective ratios of net cross-section failure resistance and plate shear failure resistance to bolt shear failure resistance. Ultimate resistance and ductility were maximum in the case of split failure mode where these ratios were approximately 1.0; they increased as the ratios decreased. Therefore, it can be concluded that these ratios should be less than 1.0 to induce the split failure mode to enable the breaking of a high-strength steel joint after the member is plastic-deformed sufficiently.

ARTICLE HISTORY

20 July 2022
22 August 2022
10 January 2023

KEYWORDS

Receiv

Revise

Accept

High strength steel; High-strength frictional bolted joints; Ultimate strength; Ductility; Failure modes

Copyright © 2023 by The Hong Kong Institute of Steel Construction. All rights reserved.

1. Introduction

Further structural rationalization of steel bridges such as weight reduction of members can be realized by using the strength of high-strength steel (hereafter called as HSS) and it improves the productivity and constructability of bridges. However, as the yield-to-tensile strength ratio (hereafter called the yield ratio) of HSS is greater than 0.90, failure of members connected by bolted joints can occur before members in the gross area are sufficiently plasticdeformed. Moreover, Eurocode 3, in which the limit state design is adopted, restricts the yield ratio to 0.72, which restricts the use of HSS [1,2,3]. The resistance relationship of a connected member at a general part and bolted joint part is expressed by eqs. (1)–(3) without considering any partial factors. As shown in these equations for the current design, it is difficult to complete the relationship of HSS members such as truss members, whose axial force is constant in the longitudinal direction.

$$P_{ygd} = A_g \sigma_y \tag{1}$$

$$P_{tnd} = A_n \sigma_t \tag{2}$$

$$P_{ygd} < P_{ind} \Longleftrightarrow A_g \sigma_y < A_n \sigma_i \Longleftrightarrow \frac{\sigma_y}{\sigma_i} (= YR) < \frac{A_n}{A_g} < 1.0$$
(3)

Here, P_{ygd} is the gross cross-section yield resistance, P_{ind} is the net crosssection failure resistance, A_g is the gross cross-sectional area, σ_y is the yield strength, A_n is the net cross-sectional area, σ_t is the tensile strength, and YR is the yield ratio.

On the other hand, some researchers report that a HSS joint has the same ductility as a mild steel joint when the connected plate is broken but the bolts are unbroken [4,5,6]. Therefore, if the effect of the yield ratio on the after-slip mechanical behavior is elucidated, structural rationalization with HSS can be realized by controlling the failure mode of the joints and securing the same ductility as a mild steel joint. Recently, a HSS called "steels for bridge high performance structure (SBHS)" was fabricated in Japan; it has high strength and weldability by applying thermos-mechanical control processes [7,8]. Additionally, SBHS has already been specified in Japanese Industrial Standards [9] and various research has been conducted [10,11].

In this study, tensile tests of high-strength frictional bolted joints with SBHS, with various geometrical configurations and grades of steel plate and

bolts, were conducted to compare the failure modes of HSS and mild steel joints and to investigate the relationship among ultimate strength, ductility, and failure modes.

2. Tensile tests

2.1. Specimens

Fig. 1 Geometrical dimensions of specimens (unit: mm)

Structural configurations and bolt arrangement (M16 bolt)

Experimental	Number	Steel	Bolt	End	Bolt	Width
Case	of Bolts	Grade	Grade	Distance	Pitch	w (mm)
n1-B508-ed25-wd50		CDUC		er (mm)	p (iiiii)	% (IIIII) 80
n1-B508-ed25-wd94	1	500	F8T	40	-	150
n1-B510-ed25-wd50						80
n1-B510-ed25-wd94		SBHS		40	-	150
n1-B510-ed35-wd50	1	500	F10T			80
n1-B510-ed35-wd94				56	-	150
n1-B512.9-ed35-wd50		CDUC	12.0			80
n1-B512.9-ed35-wd94	1	500	Class	56	-	150
n1-B512-ed25-wd50				40		80
n1-B512-ed25-wd94	1	SBHS	12G	40	-	150
n1-B512-ed35-wd50	1	500	120	56	_	80
n1-B512-ed35-wd94				50		150
n1-B514-ed25-wd50				40	_	80
n1-B514-ed25-wd94	1	SBHS	S14T			150
n1-B514-ed35-wd50	-	500		56	_	80
n1-B514-ed35-wd94						150
n1-B710-ed25-wd50				40	-	80
n1-B710-ed25-wd94	1	SBHS 700	F10T			150
n1-B710-ed35-wd50				56	-	80
n1-B710-ed35-wd94						150
n1-B712.9-ed25-wd50				40	-	80
n1-B712.9-ed25-wd94	1	SBHS	12.9			150
n1-B712.9-ed35-wd50		700	Class	56	-	80
n1-B712.9-ed35-wd94						150
n1-B712-ed25-wd50				40	-	80
n1-B712-ed25-wd94	1	SBHS	12G			150
n1-B712-ed35-wd50		700		56	-	80
n1-B712-ed35-wd94						150
n1-B714-ed25-wd50				40	-	80
n1-B714-ed25-wd94	1	SBHS	S14T			150
n1-B714-ed35-wd50		700		56	-	80
n1-B714-ed35-wd94						150
n3-B510-ed45-wd75		SBHS	F10T			
n3-B512-ed45-wd75	3	3 500		72	72	120
n3-B514-ed45-wd75			S14T			
n3-B712.9-ed45-wd75		SBHS	12.9 C.			
n3-B712-ed45-wd75	3	700	12G	72	72	120
n3-B714-ed45-wd75			S14T			

Fig.1 shows the geometrical dimensions of the specimens. M16 bolts were used on the slip-side because of the limitation of the capacity of the loading machine although it is desirable to use M22 bolts, which are commonly used in steel structures. SHTB-M22 bolts, whose tensile strength is 1400 MPa, were used on the fixed-side.

Table 1 shows the structural configurations and bolt arrangement. As shown in Fig.1 and Table 1, the parameters considered are number of bolts n, steel grades, bolt grades, end distance e_1 , and width w. In cases of series "n = 3", structural configurations such as end/edge distance and bolt pitch are not changed. If bolt shear failure occurred and the plastic strain and deformation of connected plate was not confirmed based on the residual stress and bearing deformation after the test, the original bolt hole of cases corresponding to that was expanded to 24.5 mm in diameter to obtain more data by conducting retests. Re-tests were conducted with M22 bolts. As shown in Table 2, bolt grades and bolt tensions were varied in the re-test.

Table 2

Structural configurations and bolt arrangement of re-test specimens (M22 bolt)

	Num-	Steel	Bolt	End	Width	Designed
Experimental	ber of	Grade	Grade	Dis-		Bolt
Case	DOILS			e_1 (mm)	w (mm)	$N_{\rm c}(\rm kN)$
n1-B510-ed35-wd50-N100				¢1 (1111)	80	205
n1-B510-ed35-wd50-N150	1	SBHS	F10T	56		308
n1-B510-ed35-wd94-N100		500			150	205
n1-B510-ed35-wd94-N150						308
n1-B710-ed25-wd50-N100					80	205
n1-B710-ed25-wd50-N150	1	SBHS	F10T	40		308
n1-B710-ed25-wd94-N100		700			150	205
n1-B710-ed25-wd94-N150						308
n1-B714-ed35-wd50-N025		SBHS				75
n1-B714-ed35-wd50-N050	1	700	S14T	56	80	150
n1-B714-ed35-wd50-N075						224
n1-B714-ed35-wd50-N100						299
n1-B714-ed35-wd94-N025						75
n1-B714-ed35-wd94-N050	1	SBHS	S14T	56	150	150
n1-B714-ed35-wd94-N075		700				224
n1-B714-ed35-wd94-N100						299

Fig. 2 Mechanical properties of used steels and bolts based on material tests

Mechanical properties of plates and high-strength bolts obtained by material tests are shown in Table 3 and Fig.2. The number of material test coupons is five in every steel grade and bolt glade. Young's modulus and Poisson's ratio were calculated using the least squares method with strain gauges attached to the bolts at locations illustrated in Fig.2. When a clear yield point was not confirmed because of high yield ratio, 0.2% offset yield strength adopted to calculate the designed yield resistance of all specimens. It can be observed from Table 3 that the yield ratios of all materials are greater than 0.9. The mechanical properties of M22 bolts were quoted from the inspection certificate.

Mechanical properties of plates and bolts

	Nominal	Bolt	Steel	Nominal	Young's	Poisson's	Upper	0.2% Offset	Tensile	Yield Strain	Yield	Elongation	Reduction			
Objects	Thickness	Diameter	/Bolt	Length	Modulus	Ratio	Yield	Y.S.	Strength	$\varepsilon_y = (\sigma_y,$	Ratio	after	of Area			
Objects			Grade				Stress			$\sigma_{y0.2})$ / E	$\gamma = (\sigma_y,$	Fracture	after Fracture			
	t (mm)	d (mm)		<i>L</i> (mm)	E (MPa)	v	σ_y (MPa)	$\sigma_{y0.2}$ (MPa)	σ_t (MPa)	(×10 ⁻⁶)	$\sigma_{y0.2})/\sigma_t$	(%)	(%)			
Dista	12		SBHS500		205,939	0.269	527.4	-	585.4	2,561	0.901	38.6	-			
riate	12	-	SBHS700	-	214,728	0.261	-	765.1	835.5	3,563	0.916	30.6	-			
Bolt			F8T	65	209,623	0.283	829.1	830.2	885.8	3,955	0.936	25.5	73.9			
						F10T	65	214,062	0.286	1,050.9	1,047.7	1,093.9	4,909	0.961	21.3	65.5
		16	12.9 Class	65	212,719	0.283	-	<u>1,215.6</u>	1,307.6	5,714	0.930	15.5	54.7			
	-		12G	75	211,268	0.279	-	1,202.9	1,282.4	5,694	0.938	20.1	56.5			
			S14T(SHTB)	75	208,240	0.278	-	<u>1,316.4</u>	1,430.0	6,321	0.921	19.2	54.4			
		22*	F10T	75	-	-	-	1,037.0	1,092.0	-	0.950	20.0	71.0			
		22	S14T(SHTB)	75	-	-	-	<u>1,337.0</u>	1,438.0	-	0.930	after of Ar σ_r Fracture after Fracture (σ_r) (%) (%) 1 38.6 - 6 30.6 - 6 25.5 73.' 1 21.3 65 0 15.5 54.' 8 20.1 56 1 19.2 54 0 20.0 71 0 15.0 54.'	54.0			

Note: Underlined data is used for calculation of yield strain ε_y and yield ratio y. The mechanical properties of M22* bolts are quoted from the mill test certificate.

2.2. Designed resistances

Tables 4 and 5 show a summary of the designed resistance of the specimens. The designed slip resistance P_{sd} and net cross-section yield resistance P_{ynd} are calculated using eqs. (4) and (5), respectively. The ratio of these resistances β_{d} , which is related to the slip behavior, is obtained from eq. (6). The net cross-section failure resistance P_{md} and plate shear failure resistance P_{bod} are calculated using eqs. (7) and (8), respectively. The bolt shear resistance P_{bod} is calculated from eq. (9), considering the positional relationship between the shear plane and bolt thread. Only when a 12.9 Class bolt is used, the thread is included in the shear plane.

$$P_{sd} = nm\mu_d N_d \tag{4}$$

$$P_{ynd} = (w - d_0)t_m \times \sigma_y \tag{5}$$

$$\beta_d = \frac{P_{sd}}{P_{ynd}} \tag{6}$$

 $P_{ind} = (w - d_0)t \times \sigma_t \tag{7}$

$$P_{esd} = 2 \times \{e_1 + (n-1)p\}t_m \times \frac{\sigma_t}{2}$$
(8)

$$P_{bod} = nmA_{b,sh}\tau_{tb} = n \times 2 \times \frac{\pi d^2}{4} \times \frac{\sigma_{tb}}{\sqrt{3}}$$
(9a)

$$P_{bod} = n \times (A_{b\underline{s}h} + A_{b\underline{t}h})\tau_{tb} = n \times (A_{b\underline{s}h} + A_{b\underline{t}h})\frac{\sigma_{tb}}{\sqrt{3}}$$
(9b)

Here, *n* is the number of bolts, m (=2) is the number of faying surfaces, μ_d (=0.65) is the designed slip coefficient, N_d is the designed bolt tension, *w* is the width, t_m is the thickness of the connected plate, d_0 is the bolt hole diameter, σ_y is the yield strength of the connected plate, σ_t is the tensile strength of the connected plate, $A_{b,sh}$ is the effective cross-sectional area of the bolt shank, *d* is the bolt diameter, $A_{b,sh}$ is the effective cross-sectional area of the bolt threaded part, and σ_{tb} is the tensile strength of the bolt. For the re-test, the designed slip coefficient μ_d was set at the minimum 0.20, the coefficient of surfaces as rolled [12], considering the wear of zinc-rich paint coating.

2.3. Measuring items and methods

(c) Series "n=3"Fig. 3 Measuring items and their measuring points

Designed resistance of the specimens (M16 bolt, $\mu_d = 0.65$)

Experimental Case	P _{sd} (kN)	P _{ynd} (kN)	β_d	P _{bod} (kN)	P _{tnd} (kN)	P _{esd} (kN)	Expected Failure Mode
n1-B508-ed25-wd50	111	392	0.282	206	436	281	BO
n1-B508-ed25-wd94	111	835	0.133	200	927	201	BO
n1-B510-ed25-wd50		392	0.351		436	281	BO
n1-B510-ed25-wd94	138	835	0.165	254	927	201	BO
n1-B510-ed35-wd50	150	392	0.351	234	436	303	BO
n1-B510-ed35-wd94		835	0.162		927	575	BO
n1-B512.9-ed35-wd50	165	392	0.421	270	436	303	BO
n1-B512.9-ed35-wd94	105	835	0.198	270	927	373	BO
n1-B512-ed25-wd50		392	0.441		436	281	S
n1-B512-ed25-wd94	173	835	0.207	298	927	201	S
n1-B512-ed35-wd50	175	392	0.441	270	436	303	BO
n1-B512-ed35-wd94		835	0.207		927	575	BO
n1-B514-ed25-wd50		392	0.514		436	281	S
n1-B514-ed25-wd94	202	835	0.241	222	927	201	S
n1-B514-ed35-wd50	202	392	0.514	552	436	202	BO
n1-B514-ed35-wd94		835	0.214		927	393	BO
n1-B710-ed25-wd50		569	0.242		622	401	BO
n1-B710-ed25-wd94	120	1,212	0.114	254	1,323	401	BO
n1-B710-ed35-wd50	138	569	0.242	254	622	561	BO
n1-B710-ed35-wd94		1,212	0.114		1,323		BO
n1-B712.9-ed25-wd50		569	0.291		622	401	BO
n1-B712.9-ed25-wd94	165	1,212	0.136	270	1,323	401	BO
n1-B712.9-ed35-wd50	165	569	0.291	270	622	561	BO
n1-B712.9-ed35-wd94		1,212	0.136		1,323	201	BO
n1-B712-ed25-wd50		569	0.304		622	401	BO
n1-B712-ed25-wd94	172	1,212	0.143	200	1,323	401	BO
n1-B712-ed35-wd50	1/5	569	0.304	298	622	561	BO
n1-B712-ed35-wd94		1212	0.143		1,323	301	BO
n1-B714-ed25-wd50		569	0.354		622	401	BO
n1-B714-ed25-wd94	202	1,212	0.166		1,323	401	BO
n1-B714-ed35-wd50	202	569	0.354	332	622		BO
n1-B714-ed35-wd94		1,212	0.166		1,323	561	BO
n3-B510-ed45-wd75	413		0.640	762			Ν
n3-B512-ed45-wd75	519	646	0.804	893	716	1,517	Ν
n3-B514-ed45-wd75	605		0.836	995			Ν
n3-B712.9-ed45-wd75	496		0.530	811			BO
n3-B712-ed45-wd75	519	936	0.554	893	1,023	2,166	BO
n3-B714-ed45-wd75	605		0.646	995			BO

Fig.3 shows the measuring items and their measuring points. To evaluate the entire behavior of the joint, its displacement and relative displacement between the connected and splice plates were measured. The strain of the side surface of the connected plate was measured to investigate the strain distributions after a major slip. The bolt tension was measured and controlled by the strain gauge attached to the bolt shank. The bolt tension of bolts used in the re-test was controlled by the torque control based on eq. (10). The tightened tensions were 1.1 times the design bolt tensions, considering the creep phenomenon of zinc-rich paint coating after tightening. The relaxation measurement period was more than a week.

 $T = 1.1T_d = 1.1 \times kdN_0$

Table 5Designed resistance of the re-test specimens (M22 bolt,
$$\mu_d = 0.20$$
)

Experimental Case	P _{sd} (kN)	Pynd (kN)	β_d	P _{bod} (kN)	P _{tnd} (kN)	P _{esd} (kN)	Expected Failure Mode
n1-B510-ed35-wd50-N100	82	251	0.233		200	202	Ν
n1-B510-ed35-wd50-N150	123	551	0.350	470	390	393	Ν
n1-B510-ed35-wd94-N100	82	704	0.103	479	007	202	S
n1-B510-ed35-wd94-N150	123	/94	0.155		002	393	S
n1-B710-ed25-wd50-N100	82	510	0.161		556		S
n1-B710-ed25-wd50-N150	123	510	0.241	470	330	401	S
n1-B710-ed25-wd94-N100	82	1 152	0.071	479	1.259	401	S
n1-B710-ed25-wd94-N150	123	1,152	0.107		1,238		S
n1-B714-ed35-wd50-N025	30		0.059		55/	561	S
n1-B714-ed35-wd50-N050	60	510	0.117	621			S
n1-B714-ed35-wd50-N075	90	510	0.176	031	550		S
n1-B714-ed35-wd50-N100	120		0.235				S
n1-B714-ed35-wd94-N025	30		0.026				S
n1-B714-ed35-wd94-N050	60	1 1 5 2	0.052	621	1 259		S
n1-B714-ed35-wd94-N075	90	1,132	0.078	031	1,258	501	S
n1-B714-ed35-wd94-N100	120		0.104				S

Here, T_d is the designed torque, k is the torque coefficient of bolts quoted from the inspection certificate, and d is the bolt diameter.

The applied loading rate was controlled at 1 kN/s by manual operation, as much as practically possible. The sampling time is approximately once per second. In cases of plate failure modes, the applied load was removed at 95% of the maximum load after the peak to observe the peeled area for coating and bearing deformation of the bolt hole. In cases of bolt shear failure mode, loading was continued until bolt breakage occurred due to brittle failure.

3. Results

(10)

3.1. Failure modes

As shown in Fig.4, the failure modes confirmed in the test were shear failure (SH), split failure (SP), net cross-section failure (N), bolt shear failure (BO), bolt shear failure and plate shear yielding (BO(SH)), bolt shear failure and net cross-section yielding (BO(N)). These modes are the same as those of mild steel joints [13,14,15], as well as HSS joints in other countries [4,5,6].

Fig.5 shows the definition of failure modes in this paper. Shear failure mode (SH) is the state when only plate shear yielding occurs, followed by tear-out failure. Similarly, for net cross-section failure mode (N) and bolt shear failure mode (BO), only the corresponding yielding and failure occur. Split failure mode (SP) is the state when both plate shear and net cross-section yielding occurs, followed by tear-out failure. The modes BO(SH) and BO(N) induce plate shear yielding and net cross-section yielding, respectively in addition to bolt shear failure. Figs. 4 and 5 show that the zinc-rich paint coating peeled, and the extent of this peeling depended on the plastic area of the connected plate.

a) Bolt shear (c) Bolt shear failure and (l) Bolt shear failure and net failure (BO) plate shear yielding ((BO(SH)) cross-section yielding ((BO(N))

Fig. 7 Relationship among Pmax/Pygd, Pesd/Pbod, and Pind/Pbod

3.2. Comparison of the expected and actual failure modes

The expected and actual failure modes classified by P_{tnd}/P_{bod} and P_{esd}/P_{bod} are shown in Fig.6. Mode SH, N, and BO can be almost classified using the aforementioned conventional equations developed for mild steel joints. Coupled modes such as SP, BO(SH), and BO (N) occurred as P_{tnd}/P_{bod} and P_{esd}/P_{bod} decreased. Especially in the case of SP, P_{esd}/P_{bod} and P_{tnd}/P_{bod} were both approximately 1.0.

3.3. Relationship among ultimate strength, structural configurations, and failure modes

To use the plastic deformation capacity of the connected member, the maximum load of the joint P_{max} must be larger than the gross cross-section yield resistance P_{ygd} . Fig.7 shows the relationship among the ratios P_{max}/P_{ygd} , P_{esd}/P_{bod} , and P_{md}/P_{bod} . The maximum load of the joint gradually became larger than the gross cross-section yield resistance as these ratios decreased or the number of bolts increased. In cases of series "n = 1", mode SP shows the highest ultimate resistance. However, there is no case in this study whose P_{max}/P_{ygd} is higher than 1.0. Focused on the distribution tendency of the plotted data, P_{max}/P_{ygd} was inversely proportional to P_{esd}/P_{bod} . Therefore, multiple regression analysis was performed to obtain the approximate curve shown in Fig.7(c). The considered approximate equation is expressed as eq. (11). The results of multiple regression analysis are shown in Table 6. The adjusted coefficient of deter-mination R^2_{adj} of this equation is 0.908, indicating a strong correlation.

Statistical results of multiple regression analysis

R	R^2	Adjusted R^2_{adj}	Standard Error of the Estimate SE _e	Partial Regression Coefficients	Estimate	95% Confidence Level Lower Limits	95% Confidence Level Upper Limits	Standard Error SE	t-Statistic	P-Statistic
				а	0.051	0.019	0.082	0.016	3.141	0.002
0.953	0.909	0.908	0.07	b	10.006	4.535	15.477	2.770	3.612	0.0004
				С	2.632	1.462	3.802	0.592	4.443	< 0.0001

Fig. 8 Relationship among δ/δ_0 , P_{esd}/P_{bod} , P_{tnd}/P_{bod}

$$\frac{P_{\max}}{P_{ygd}} = a \exp\left(\frac{b}{P_{md}/P_{bod} + c}\right) \tag{11}$$

Here, a, b, and c are partial regression coefficients.

3.4. Relationship among ductility, structural configurations, and failure modes

Similarly, the relationship among elongation δ/δ_0 , P_{esd}/P_{bod} , and P_{ind}/P_{bod} is shown in Fig.8. The elongation δ/δ_0 is the ratio of the entire displacement of the joint at maximum load δ to the original gauge length δ_0 . As P_{esd}/P_{bod} and P_{ind}/P_{bod} decreased, the elongation δ/δ_0 increased. In cases of series "n = 1", mode SP shows the highest ductility and the highest ultimate resistance.

4. Conclusions

In this study, tensile tests of high-strength frictional bolted joints with HSS developed in Japan were conducted to compare the failure modes of HSS and conventional mild steel joints and to investigate the relationship among ultimate strength, ductility, and failure mode. The following conclusions can be drawn.

- (1) Failure modes of HSS joints can be assumed to be the same as those of mild steel joints and can be almost classified using the designed ultimate resistance ratios of the plate and bolt such as P_{esd}/P_{bod} and P_{ind}/P_{bod}, which have already been developed for mild steel joints and widely used in some design codes. For instance, when a coupled failure mode occurred, the corresponding resistance ratio related to the mode was approximately 1.0. Especially, in the case of split failure mode of the connected plate, these ratios were both approximately 1.0.
- (2) The maximum load of the joint gradually became larger than the gross cross-section yield resistance these ratios P_{esd}/P_{bod} and P_{ind}/P_{bod} decreased or the number of bolts increased. There is no case in this paper whose P_{max}/P_{ygd} is greater than 1.0. As P_{max}/P_{ygd} was inversely proportional to P_{esd}/P_{bod} , the approximate equation that can precisely estimate P_{max}/P_{ygd} was obtained, considering only P_{ind}/P_{bod} . The adjusted coefficient of determination R^2_{adj} of the proposed equation is 0.908.
- (3) The entire elongation of the joint δ/δ_0 increased as $P_{esd}P_{bod}$ and $P_{ind}P_{bod}$ decreased and the number of bolts increased along with the maximum load.
- (4) In cases of series "n = 1", the split failure mode (SP) exhibits the highest ultimate resistance and ductility. Considering (1)–(3), the ratios P_{esd}/P_{bod} and P_{md}/P_{bod} should be less than 1.0 to induce mode SP to enable the breakage of the HSS joint after the member is plastic-deformed sufficiently.

For joints consisting of multiple bolts in the longitudinal and transverse direction, other failure modes such as block shear failure occur easily, which could not be confirmed in this test. Therefore, future work will be devoted to conducting tensile tests on multiple-bolted joints. Numerical analysis will be also conducted to investigate the influence of various structural configurations and bolt arrangement on the relationship among P_{max}/P_{ygd} , P_{esd}/P_{bod} , and P_{ind}/P_{bod} .

Acknowledgment

This work was supported by The Japan Iron and Steel Federation. The authors would like to express their gratitude.

References

- [1] Eurocode 3: Design of Steel Structures Part 1-1: General Rules and Rules for Buildings,
- EN1993-1-1, European Committee for Standardization (CEN), 2005.[2] Eurocode 3: Design of Steel Structures Part 1-8: Design of Joints, EN1993-1-8, European Committee for Standardization (CEN), 2005.
- [3] Eurocode 3: Design of Steel Structures Part 1-12: Additional Rules for the Extension of EN 1993 up to Steel Grades S700, EN1993-1-12, European Committee for Standardization (CEN), 2007.
- [4] Može P., Beg D. and Lopatic J., "Net cross-section design resistance and local ductility of elements made of high strength steel", Journal of Constructional Steel Research, 63(11), 1431-1441, 2007.
- [5] Može P. and Beg D., "High strength steel tension splices with one or two bolts", Journal of Constructional Steel Research, 66(8-9), 1000-1010, 2010.
- [6] Wang Y.B., Lyu Y.F., Li G.Q. and Liew J.Y.R., "Behavior of single bolt bearing on high strength steel plate", Journal of Constructional Steel Research, 137, 19-30, 2017.
- [7] Homma, K., Tanaka, M., Matsuoka, K., Kasuya, T. and Kawasaki, H., "Development of application technologies for bridge high-performance steel, BHS", Nippon Steel Technical Report, 97, 51-57, 2008.
- [8] Miki, C., Ichikawa, A., Kusunoki, T. and Kawabata, F., "Proposal of new high-performance steels for bridges (BHS500, BHS700)", Journal of Japan Society of Civil Engineers, ser. 1, 738(64), 1-10, 2003. (in Japanese)
- [9] JIS G 3140: Higher yield strength steel plates for bridges, Japanese Industrial standards, 2011. (in Japanese)
- [10] Duc, D.V., Okui, Y., Hagiwara, K. and Nagai, M., "Probabilistic distributions of plate buckling strength for normal and bridge high-performance steels", International Journal of Steel Structures, 13(3), 557-567, 2013.
- [11] Rahman, M., Okui, Y., Shoji, T. and Komuro, M., "Probabilistic ultimate buckling strength of stiffened plates, considering thick and high-performance steel", Journal of Constructional Steel Research, 138, 184-195, 2017.
- [12] Execution of Steel Structures and Aluminum Structures -Part 2: Technical Requirements for Steel Structures, EN1090-2, European Committee for Standardization (CEN), 2008.
- [13] Može P. and Beg D., "A complete study of bearing stress in single bolt connections", Journal of Constructional Steel Research, 95, 126-140, 2014.
- [14] Može P., "Bearing strength at bolt holes in connections with large end distance and bolt pitch", Journal of Constructional Steel Research, 147, 132-144, 2018.
- [15] Toda Y., Yamaguchi T., Mineyama Y., and Naoe K., "Experimental study of bearing strength of frictional bolted connection based on bolt hole deformation", Journal of Japan Society of Civil Engineers, ser. A1, 70(3), 333-345, 2014. (in Japanese)