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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

In the direct method of identifying the physical parameters of the shear-type frame structures through the frequencies and 

modes from the experimental modal analysis (EMA), the accuracy of the lumped mass depends on the initial mass, while 

the identified mass matrix and stiffness matrix are prone to generate some matrix elements without any physical meaning. 

In this paper, based on the natural frequencies and modes obtained from the EMA, an iterative constrained optimization 

solution for correcting mass matrix and a least squares solution for the lateral stiffness are proposed. The method takes the  

total mass of the test model as the constraint condition and develops an iterative correction method for the lumped mass, 

which is independent of the initial lumped mass. When the measured modes are exact, the iterative solution converges to 

the exact solution. On this basis, the least squares calculation equation of the lateral stiffness is established according to the 

natural frequencies and modes. Taking the numerical model of a 3-story steel frame structure as an example, the influence 

of errors of measured modes on the identification accuracy is investigated. Then, a 2-story steel frame test model is used to 

identify the mass matrix and stiffness matrix under three different counterweights. Numerical and experimental results show 

that the proposed method has good accuracy and stability, and the identified mass matrix and stiffness matrix have clear 
physical significance.  
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1.  Introduction 

 

Shear-type steel frame structure is one of the most common engineering 

structures. In order to make the designed structure safer and more economical, 

a lot of theoretical research [1, 2] and experimental research [3, 4] have been 

carried out. When the stiffness of the beam is much greater than that of the 

column, this type of structure can be simplified into a lumped mass shear model. 

In the construction process of actual structures, there are usually geometric 

errors, material property errors and uncertainty of joint stiffness [5]. After 

careful consideration of the geometric similarity ratio of the experimental model, 

the size of the designed experimental model is typically small. As a result, the 

geometric error of the experimental model has a more significant impact on the 

mass and stiffness of the structure. In order to predict the response accurately 

for the analytical model under dynamic load or the damage in different test 

stages, it is necessary to identify the high precision mass matrix and stiffness 

matrix of the test model. 

Depending on whether a priori model is required, the identification methods 

of mass and stiffness matrices can be classified as direct methods and indirect 

methods [6]. The indirect methods are to optimize the parameters of the analysis 

model to minimize the errors between the calculation results and the 

experimental results through the model updating method. The objective function 

of the optimization analysis significantly affects the results of the model 

updating. Since the frequencies and modes in practical engineering are the most 

easily obtained parameters, the objective function parameters are often 

constructed based on frequencies, modes and their derived variables [7-9]. 

Frequency response functions [10, 11] and time histories [12] contain more high 

frequency signals and are commonly used to construct objective functions. The 

iterative calculation of nonlinear equations is involved in the model updating, 

and the computational workload is considerably large. To improve the 

computational efficiency, based on sensitivity analysis [13], the nonlinear 

equations are linearized for the iterative calculation to accelerate the 

convergence, or artificial intelligence algorithms [14, 15] are used to compute 

the solution of the optimization equation. This method is suitable for complex 

large-scale structures and has a wider applicable range, but the computational 

workload is still significant. The direct methods are to calculate the mass and 

stiffness matrices of the system directly from the modal parameters or dynamic 

response time history of the structure without prior finite element model [16]. 

Among them, the physical parameter identification method based on modal 

parameters has been widely used because of its simplicity. Berman [17] 

established the Lagrange multiplier method for mass matrix correction with the 

minimum modified mass as the objective function. Baruch [18] also used the 

Lagrange multiplier method to obtain the correction of the mass matrix and 

stiffness matrix. Wei [19, 20] established methods to update the mass and 

stiffness matrices simultaneously and studied the interaction influence of mass 

and stiffness correction. Lee and Eun [21, 22] took the modified mass matrix 

and stiffness matrix as the objective function, modified the mass matrix and 

stiffness matrix at the same time and compared the accuracy of different methods 

to identify the stiffness matrix when the mass matrix was known. Qi [23] 

established the least squares solution of the lumped mass and lateral stiffness of 

a shear frame structure under the assumption that the mass and stiffness 

distribution of each layer is known. For the lumped-mass shear model, if the 

mass matrix of the system is known, then the stiffness matrix can be calculated 

directly by inverse analysis of the Jacobi matrix eigenproblem [24]. 

The direct method is easy to use and is usually suitable for structures with 

fewer degrees of freedom. Since the frame test model of the lumped mass shear 

model has fewer degrees of freedom, the mass matrix is diagonal, and the 

stiffness matrix is tridiagonal, it is more appropriate to use the direct method for 

calculation. The lumped mass shear model [25] of the frame structure is a 

simplified computational model obtained by using kinematic constraints. The 

diagonal matrix formed by the lumped mass is a simplification of the uniform 

mass matrix. Therefore, the exact value of the lumped mass is unknown. In 

addition, the calculated length of the column cannot be accurately estimated in 

the lateral stiffness calculation, which leads to a significant difference between 

the measured dynamic characteristics of the analytical model and the test model 

[26, 27]. When the mass matrix is unknown, the direct method to identify the 

physical parameters of the shear frame structure will face the following 

problems: (1) The accuracy of the direct method to identify the lumped mass is 

related to the initial solution, even if there is no modal error, the exact solution 

of the mass matrix still cannot be obtained. (2) The sparsity of the original matrix 

cannot be kept in the identified mass matrix and stiffness matrix, that is, the 

identified mass matrix and stiffness matrix may become full matrices and lose 

their physical meaning. 

To address the above two problems, this paper proposes an iterative 

constrained optimization solution to correct the mass matrix so that the identified 

mass matrix is independent of the initial solution and converges to the accurate 

solution under the accurate mode. After the mass matrix is identified, the least 

squares solution of the lateral stiffness is also proposed. In this manner, the 

identified mass matrix and stiffness matrix are kept sparse, and each parameter 

meets the requirements of the calculation model and has a physical meaning. On 

this basis, the numerical simulation method was used to identify the mass matrix 

and stiffness matrix of a three-story frame structure. The influence of the initial 

mass and errors of measured modes on the identification results were analyzed. 

Then, the physical parameter identification of a two-story frame test model was 

studied. Finally, the accuracy and effectiveness of the proposed method are 

verified by comparing and analyzing the identification results of lumped mass 

and lateral stiffness of the model under different counterweights. 

 

2.  Iterative constrained optimization solution for correcting lumped 

mass 
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The N-layer shear frame structure shown in Fig. 1 can be simplified into a 

lumped mass shear model with N degrees of freedom. When the mass matrix is 

unknown, the initial lumped mass matrix is assumed to be: 

 

0 ,0
[ ]

i
diag m=M  (1) 

 

in which mi,0 is the lumped mass at the 0th iteration; M is N×N diagonal mass 

matrix.  

 

 

Fig. 1 Calculation model of shear-type frame structure 

 

To identify the mass matrix of the model by the frequency domain method, 

the natural frequencies of the model and the corresponding modes ,
i i

 
(i=1,2,…,N) are measured from the experimental model analysis. By using the 

iterative method to correct the mass matrix, the lumped mass matrix and the 

correction matrix of the (k-1)th iteration are denoted as 
1k−

M   and 
1k−

M  

respectively, and the corrected mass matrix 
k

M  can be therefore expressed as: 

 

1 1k k k− −= +M M M  (2) 

 

Normalizing the measured modes gives: 

 
T 1

i k i
=M   (3) 

 

Then 

 
T

,k B k
=M M   (4) 

 

in which   is the mode matrix made up of the N modes 
i
 . If 

,B k
M is a unit 

matrix, the modes are orthogonal on
k

M , and there is no need to correct the 

mass matrix; otherwise, it needs to be corrected. Let the correction mass matrix 

k
M   be a diagonal matrix 

,
[ ]

k i k
diag m = M   so that the corrected mass 

satisfies: 

 

( + )T

k k =M M I   (5) 

 

where I is the unit matrix. Substituting Eq. (4) into Eq. (5) yields: 

 
T

,k B k = −M I M   (6) 

 

Expanding each upper triangular element in Eq. (6) yields: 

 
T

,i k j ij Bij k
m = −M   ( j i ) (7) 

 

where ij
  is the Kronecker symbol, when i=j, 1

ij
 = ; when i j , 0

ij
 = . 

Expanding Eq. (7) gives: 

 

1 1 1, 2 2 2, , ,i j k i j k Ni Nj N k ij Bij k
m m m m       +  + +  = −L  (8) 

 

For the Nth order mode, N(N+1)/2 equations can be obtained, and these 

equations can be arranged as a set of algebraic equations with 
,i k

m  

( 1,2, , )i N= L as unknowns: 

 

 k kk
m =A B  (9) 

 

in which,  
k

m  is a vector made up of  main diagonal elements in 
k

M . 

The number of equations contained in Eq. (9) is greater than the number of 

unknowns, and the least squares solution of  
k

m  can be expressed as: 

 

  ( )
1

T T

k k k kk
m

−

 = A A A B  (10) 

 

For the frame structure, if the total mass ma of the model is known, the sum 

of the lumped mass should be equal to ma when the initial mass matrix is 

assigned; that is, 

 

,0

1

N

i a

i

m m
=

=  (11) 

 

When correcting the mass, the constraint condition is introduced: 

 

,

1

0
N

i k

i

m
=

 =  (12) 

 

Using the Lagrange multiplier method, the optimal equation to solve the 

minimum value of Eq. (9) under the constraint of Eq. (12) can be expressed as: 

 

       

 

( ) 2( )

( ) ( )

T T T

k k k kk k k k

T T T

k k k k c k

f m m m m

m

 =   − 

+ + 

T

T

A A A B

A B A B A
 (13) 

 

where α is the Lagrange multiplier;  1 1 1
T

c
= LA  is a vector, whose 

elements are all unity. Taking the derivative of Eq. (13) with respect to  
k

m  

and α respectively and setting the corresponding derivative to zero, the system 

of algebraic equations can be obtained: 

 

 2 2

0 0

T T

k k c k kk

T

c

m



       
=    
     

A A A A B

A
 (14) 

 

Solving Eq. (14) can get the kth iteration correction of lumped mass that 

satisfies the constraints. 

Due to the errors of the measured modes, it is still impossible to accurately 

establish Eq. (5) through the correction of the mass matrix. However, the 

corrected mass can become smaller and smaller through iterative calculation. 

When the corrected mass is small enough, the iteration can be terminated. The 

conditions for the termination of the iteration can be expressed as: 

 

k

k

e



M

M
 (15) 

 

in which, 
k

M  and 
k

M   are the second-order norms of 
k

M  and
k

M  

respectively; e is a predetermined tolerance and usually is set to 1×10-6. 

 

3.  Least squares solution for lateral stiffness  

 

After obtaining the corrected mass matrix M, the jth mode satisfies the 

eigenvalue equation: 

 
2

j j j
=K M   (16) 

 

where j
  is the jth natural frequency; K is the stiffness matrix of the structure. 

When all natural frequencies and modes are known, the stiffness matrix can be 

expressed as: 

 
2[ ] T

j
diag =K M M   (17) 

 

When the modal and mass matrices have errors, the stiffness matrix 

obtained by Eq. (17) is a full matrix, which leads to inconsistency between the 

stiffness matrix and the physical model. In order to make the identified stiffness 

matrix conform to the physical model, for the lumped-mass shear model, K has 

to be a tridiagonal matrix. When the numbering method of the degrees of 

freedom in Fig. 1 is adopted, the relationship between the stiffness matrix K and 

the lateral stiffness can be expressed as [24]: 

 

。

…

k1

k2

kN-1

kN

…

m1

m2

mN-1

mN uN

uN-1

u2

u1

…
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T=K TkT  (18) 

 

where [ ]
i

diag k=k  is the diagonal matrix of lateral stiffness; ki is the lateral 

stiffness of the ith layer; T is the stiffness transformation matrix: 

 

1 1 0 ... 0

0 1 1 ... 0

... ... ... ... ...

0 ... ... 1 1

0 ... ... 0 1

− 
 

− 
 =
 

− 
 
 

T  (19) 

 

Eq. (18) denotes that the stiffness matrix is similar to the diagonal matrix of 

lateral stiffness for the lumped-mass shear model. After multiplying both sides 

of Eq. (16) by T

j
   on the left, using Eq. (18) and the modal orthogonality 

relation on the mass matrix, the following equations can be obtained: 

 
T T

i j i ij
 =TkT   (20) 

 

Let 

 

T

i i=x T   (21) 

 

Expanding Eq. (20) gives: 

 

1 1 1 2 2 2i j i j Ni Nj n ij i
x x k x x k x x k  + + + =L  (22) 

 

After N(N+1)/2 numbers of Eq. (22) are taken from the upper triangular part 

of Eq. (20), these equations can be rewritten in matrix form: 

 

 k =X Y  (23) 

 

in which {k} is a vector composed of the main diagonal elements of k. Then the 

least squares solution of {k} is: 

 

  ( )
1

T Tk
−

= X X X Y  (24) 

 

From the calculation processes of Eq. (14) and Eq. (24), it can be seen that 

the prior information of the mass and stiffness of each layer is not required. The 

identified lumped mass and lateral stiffness is consistent with physical model. 

And the natural frequency and mode of the structure as well as the total mass are 

required to solve the lumped mass and lateral stiffness directly so that the 

calculation is relatively simple. 

 

4.  The algorithm workflow 

 

To make the procedure of the algorithm clearer, the workflow of the 

proposed method is shown in Fig. 2. The algorithm is executed in six steps:  

Step 1: Measure the natural frequencies of the model and the corresponding 

modes ,
i i

  (i=1,2,…,N).  

Step 2: Assume initial lumped mass mi,0(i=1,2,…,N) satisfy with Eq. (11), 
and set k=1. 

Step 3: Normalize 
i
  (i=1,2,…,N) by Eq. (3).  

Step 4: Assemble the matrix 
k

A  and the vector 
k

B , then obtain  
k

m  

by Eq. (14), and set 
1k k k+ = +M M M . 

Step 5: If k

k

e



M

M
, output the 

1k+
M  as the solution and terminate the 

computation; otherwise, set k=k+1, and go back to Step 3. 

Step 6: Assemble the matrix X  and the vector Y , then obtain  k  by 

Eq. (24). 

 

5.  Validation of the proposed algorithm  

 

The following 3-layer steel frame is an example to verify the accuracy and 

effectiveness of the proposed algorithm. The frame structure model, shown in 

Fig. 3, was analyzed by Clough and Penzien [25]. The exact mass of each layer 

is: m1=10kg, m2=7.5kg, m3=5kg. The exact lateral stiffness of each layer is: 

k1=1800N/m, k2=1200N/s, k3=600N/m. 

 

F

T

k=k+1     

k=1     

( )  Eq. 14 for
k

m

, obtained by EMA
i i


1k k k+
= + M M M

End

( )  Eq. 24 for k

( ),0
Assume satisfied with Eq. 11

i
m

    

     Assemble andk kA B

Assemble andX Y

k

k

e



M

M

( )Normalize the by Eq. 3i

 

Fig. 2 Flowchart of the proposed method 

 

 

Fig. 3 3-layer steel frame structure model 

 

5.1. Influences of the initial solution on the calculation result  

 

The verification of accuracy and convergence of mass correction in Eq. (14) 

with the following two initial lumped mass are carried out: 

 

Case 1:  0
9.5 7.5 5.5diag=M  

Case 2:  0
7.5 7.5 7.5diag=M  

 

Table 1 shows the lumped mass of each layer after the mass correction of 

the two cases. Qi [23] used the constrained least squares while Berman [17] used 

the Lagrange multiplier method for the lumped mass correction. Their results 

are also listed in the table for comparison.  

It is observed that the results of the two cases by the proposed method are 

the same as the exact solution, while the calculation results by Qi [23] and 

Berman [17] are different from the exact solution. The relative error em of the 

identified lumped mass can be expressed as: 

 

*

*
100%

m

m m
e

m

−
=   (25) 

 

in which m and m* are the approximate and exact mass respectively. 

The maximum relative errors of Case 1 and Case 2 obtained by Qi [23] are 

4.72% and 23.28% respectively, and the maximum relative errors of the main 

diagonal elements of Case 1 and Case 2 obtained by Berman [17] are 3.54% and 

17.74% respectively. This shows that the accuracy of the correction by these two 

methods is related to the initial solution. In these two methods, the smaller the 

difference between the initial solution and the exact solution, the higher the 
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accuracy of the correction result, and their identified total mass is unequal to the 

exact solution even if the total mass of the initial solution is consistent with the 

exact solution. 

 

Table 1 

The corrected lumped mass of 3-layer steel frame 

Method Case1 Case2 

Present Study 

10

7.5

5

 
 
 
  

 

10

7.5

5

 
 
 
  

 

Ref. [23] 

9.911

7.563

5.236

 
 
 
  

 

9.379

7.525

6.164

 
 
 
  

 

Ref. [17] 

10.016 0.226 0

0.226 7.597 0.004

0 0.004 5.177

 
 

− 
 − 

 

10.081 1.129 0

1.129 7.984 0.565

0 0.565 5.887

 
 
 
  

 

 

On the contrary, in the proposed method, different initial mass would also 

converge to the exact solution, which demonstrates good calculation accuracy 

and stability. Fig. 4 shows the calculation errors obtained in the iterative process 

of the two cases. From the calculation results, the initial solution would only 

influence the number of iterative steps, 14 and 16 iteration steps for Case 1 and 

Case 2 respectively. However, it has no effect on the convergence result. 

Table 2 shows the lateral stiffness of each layer obtained from Eq. (24) 

based on the identified lumped mass. The maximum relative errors of Case 1 

and Case 2 stiffness obtained by Qi [23] are 1.50% and 5.75% respectively and 

by Berman [17] are 3.92% and 19.83% respectively. This result shows that the 

errors of the identified lateral stiffness by Qi and by Berman would increase with 

the increase of the error of the identified mass. In the proposed method, the 

identified lateral stiffness is the same as the exact solution. 

 

 

(a) Case 1 

 

(b) Case 2 

Fig. 4 Errors of identified lumped mass in the iterative process 

 

5.2. The influence of the error of measured mode 

 

Error is inevitable in experiment modal analysis (EMA) of engineering 

structures. Generally, the error of measured mode is much larger than that of 

measured frequency [6]. Therefore, in the following analysis, the influence of 

modal measurement error on the identification of the lumped mass and lateral 

stiffness is investigated, and the error of measured frequency is ignored. It is 

assumed that the relative error of measured modes is in a normal distribution: 

 

 

 

Table 2  

Identified lateral stiffness (kN/m) 

ki Case1 Case2 

Present 

study 

Ref.[23] Ref. [17] Present 

study 

Ref.[23] Ref. [17] 

k1 1.800 1.824 1.819 1.800 1.884 1.888 

k2 1.200 1.193 1.153 1.200 1.131 0.962 

k3 0.600 0.609 0.609 0.600 0.633 0.640 

 

2~ (0, )N   (26) 

 

in which σ is the standard deviation. The mode with noise after considering the 

measurement error is: 

 
*(1 )

ij ij
  = +  (27) 

 

in which *

ij
  is the exact value of modal displacement. 

In order to analyze the statistical results of the influence of measurement 

error on the identification of lumped mass and stiffness, 100 groups of random 

numbers are generated for each standard deviation. Fig. 5 is the box diagram of 

the lumped mass and stiffness under the standard deviation of 0.01, 0.02, 0.03, 

0.04 and 0.05 respectively. Since the proposed method is independent of the 

initial mass, the convergence result of Case 1 initial mass distribution is the same 

as that of Case 2. It can be seen from the calculation results that although there 

is measurement error in the mode, the median value of the identified mass and 

stiffness are very close to the exact solution. The variance of identification 

results becomes greater with increasing error of the measured mode. Table 3 

shows the errors of the mean value of the identified lumped mass and lateral 

stiffness under different variances. The numerical results show that the error of 

mean is less than 1% and is independent of the variation of measured mode. 

 

 

(a) Mass 

 

(b) Stiffness 

Fig. 5 Box diagram for identifying mass and stiffness under different errors 

 
Table 3  

Errors of mean value of identified lumped mass and lateral stiffness (%) 

σ m1 m2 m3 k1 k2 k3 

0.01 0.038 -0.055 0.008 0.060 -0.031 -0.022 

0.02 -0.003 -0.008 0.017 0.307 -0.119 -0.147 

0.03 -0.065 0.265 -0.267 -0.103 0.196 -0.316 

0.04 -0.516 0.280 0.611 -0.786 -0.108 0.397 

0.05 -0.303 0.595 -0.286 -0.093 0.257 -0.667 

 

To further analyze the influence of the error of measured mode on the 

calculation results, the coefficients of variation (COV) of identified parameters 
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-2

-1

0

1

2

3

4

5

e m
/%

No. of Iteration

 m1

 m2

 m3

0 2 4 6 8 10 12 14 16 18

-10

-5

0

5

10

15

20

25

No. of Iteration

 m1

 m2

 m3

e m
/%



Jin-Peng Tan and Dan-Guang Pan   147 

 

are defined: 

 




=  (28) 

 

in which 
  and   are the standard deviation and mean value of variable 

  (mi and ki, i=1, 2, 3) respectively. Fig. 6 shows the COV of the identified 

lumped mass and lateral stiffness under various variances of measured mode. 

The COV clearly increases with the increase of variance. However, the COV of 

the mass is almost the same as that of the stiffness. For example, when the 

standard deviation of mode is 5%, the COV of mass and stiffness are also 

approximately 5%, which shows that the error of identified lumped mass and 

lateral stiffness is almost the same as that of mode. The error of measured mode 

is not enlarged in the process of identifying lumped mass and lateral stiffness in 

turn, so the identification method has good stability. 

 

6.  Mass and stiffness identification of frame test model 

 

To further verify the adaptability of the proposed method in the frame test 

model, a shear steel frame model is designed. The steel frame is a two-story two-

span one-bay structure with layer height of 0.39m, a span of 500mm and a bay 

of 375mm. The designed section of the column is 4mm × 20mm, the beam is 

4mm (width) × 15mm (height), and the floor slab is a 4mm thick steel plate. In 

order to avoid torsional vibration of the structure, diagonal braces with a cross-

section of 4mm × 8mm are installed in the vertical vibration direction. The 

design weight of the model is 53.2kg. However, due to the thickness 

imperfection of the steel plates, the actual weight of the test model is 49.2kg. To 

analyze the lumped mass and lateral stiffness of two degrees of freedom formed 

by the frame model, three counterweight combinations are applied, as shown in 

Table 4, which are called Structure 1, Structure 2 and Structure 3 respectively. 

The photos of the tested steel frames are shown in Fig. 7. The EMA is carried 

out by the acceleration signal of the accelerometer under the excitation of a force 

hammer on the second floor. Then the eigensystem realization algorithm (ERA) 

[28] is used to identify the dynamic characteristics. The identified natural 

frequencies are shown in Table 5 and the mode shapes are shown in Fig. 8. 

 

 
(a) Mass 

 
(b) Stiffness 

Fig. 6 COV of the identified lumped mass and lateral stiffness 

 

Table 4  

Counterweight of structure (kg) 

The Floor Structure 1 Structure 2 Structure 3 

1 13.5 27.5 41 

2 8.6 22.6 36.1 

 

 

(a) Structure 1  

 

(b) Structure 2 

 

(c) Structure 3 

Fig. 7 Photos of tested steel frames 

 

Table 5  

Measured natural frequencies (Hz) 

No. of Mode Structure 1 Structure 2 Structure 3 

1 2.990 2.380 2.030 

2 7.934 6.331 5.420 

 

 

 

(a) The 1st mode 

 
 

(b) The 2nd mode 

Fig. 8 Modes of the structure 
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According to the measured mass of the frame structure, the total net mass 

of the two lumped mass of the test models is 31.33kg as the constraint condition. 

By the proposed method, the lumped mass and lateral stiffness of the three 

structures are identified, as shown in Table 6.  

 

Table 6  

The identified mass and stiffness of the 2-story steel frame 

Floor 

Structure 1 Structure 2 Structure 3 

Mass 

(Kg) 

Net mass 

(Kg) 

Lateral stiffness 

(kN/m) 

Mass 

(Kg) 

Net mass 

(Kg) 

Lateral stiffness 

(kN/m) 

Mass 

(Kg) 

Net mass 

(Kg) 

Lateral stiffness 

(kN/m) 

1 26.545 13.045 25.517 40.238 12.738 25.019 53.730 12.730 24.054 

2 26.885 18.285 25.176 41.192 18.592 24.239 54.700 18.600 23.842 

The net mass in Table 6 is the identified lumped mass minus the 

counterweight, which means the lumped mass of the test model. The maximum 

difference of the identified net mass of the three structures is 2.41%. The 

difference in the identification results of different counterweights is caused by 

random errors in the measured mode. The maximum difference of the identified 

lateral stiffness is 5.73%, which is slightly greater than that of the lumped mass. 

This is also caused by some random errors of the measured natural frequency. 

Based on the identified lumped mass and lateral stiffness, the analytical natural 

frequencies of the three structures are estimated by eigenvalue analysis, as 

shown in Table 7.  

If the natural frequency obtained from the test is taken as the accurate 

solution, the relative error of the analytical natural frequencies can then be 

defined by: 

 

*

*
100%

j j

j

e
 



−
=   (29) 

 

in which 
j   and *

j   are the analytical and measured natural frequencies 

respectively. The relative error of the analytical natural frequency is shown in 

Table 8. The calculation result shows that the maximum error of analytical 

natural frequency is 1.72%, which shows good accuracy of the identified 

lumped mass and lateral stiffness. 

 

Table 7  

Analytical natural frequencies of the 2-story steel frame(Hz) 

No. of Mode Structure 1 Structure 2 Structure 3 

1 3.030 2.421 2.065 

2 7.932 6.329 5.418 

 

Table 8  

Relative errors (%) of analytical natural frequency of the 2-story steel frame 

No. of Mode Structure 1 Structure 2 Structure 3 

1 1.338 1.723 1.724 

2 -0.025 -0.032 -0.037 

 

7.  Conclusion 

 

To identify the mass matrix and stiffness matrix of the shear-type frame test 

model, a high precision identification method is proposed to correct the lumped 

mass and lateral stiffness based on the natural frequencies and modes. 

According to the analytical and experimental results, the following conclusions 

can be drawn: 

(1) For the shear-type frame structure, the lumped mass is a diagonal matrix, 

and the stiffness matrix can also be transformed into a diagonal matrix of 

lateral stiffness by the stiffness transformation matrix. The iterative 

constrained optimization solution of the mass matrix correction and the 

least squares solution of the lateral stiffness are established. Therefore, the 

identified mass matrix and stiffness matrix have clear physical significance. 

(2) The identified mass matrix is independent of the initial mass and does not 

demand the prior mass distribution. When the measured modes are exact, 

the identified mass converges to the exact solution. When there are errors 

in the measured modes, the error of the identified lumped mass and lateral 

stiffness is almost the same as the modal error. The modal error does not 

enlarge in the process of identifying the lumped mass and lateral stiffness 

in turn, and the identification method has good stability. 

(3) The maximum differences of identified lumped mass and lateral stiffness 

of steel frame test model with three different counterweights are 2.41% and 

5.73% respectively. The maximum error between the analytical and 

experimental natural frequencies is 1.72%, which shows a good accuracy. 

The identification method of stiffness coefficients in this paper is applicable 

to shear-type frame structures whose stiffness matrix is a tridiagonal matrix. In 

the future, more research is needed to identify the physical parameters of the 

bending-type structures. 
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