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Abstract: Some concepts and results dealing with the design and safety checking of members integrated in plane steel 
frames are presented and discussed. Initially, attention is paid to the identification and clarification of a number of 
ambiguities related to the application of the buckling length concept to frame members. Then, the safety checking of 
columns integrated in frames is addressed and it is shown that, if their buckling lengths are “correctly determined”, only one 
particular column, designated as “critical column”, needs to be checked − a finding which leads to the proposal of a “frame 
optimisation procedure”. Next, the safety checking of beam-columns integrated in frames is dealt with: the application of 
the interaction formulae appearing in the upcoming EN version of Eurocode 3 is addressed and particular attention is paid 
to the appropriate choice of the buckling length and “equivalent moment factor” values, both in terms of safety and accuracy. In 
addition, one proposes an alternative approach to use the beam-column interaction formulae, which is based on the results of 
genuine second-order elastic analyses. In order to illustrate the application and assess the validity and advantages of the 
concepts and procedures presented throughout the paper, one presents numerical results concerning simple (two-bar) 
structural systems and these results are compared with “exact” frame ultimate (collapse) load values, yielded by second-order 
plastic zone analyses that incorporate member initial imperfections. On the basis of the above comparative study, it is 
possible to draw several conclusions and, in particular, it is shown that the proposed approaches consistently yield accurate 
and conservative frame strength estimates. 
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1.  INTRODUCTION 
 
Ideally, the design or safety checking of steel frames should be carried out on the basis of rigorous 
geometrically non-linear elastic-plastic structural analyses, which incorporate member and frame 
imperfections and provide “exact” frame load-carrying capacities. However, in spite of the fast growing 
popularity of the so-called “advanced methods of structural analysis”[1,2] − some of them are already 
allowed by various existing steel design codes (e.g., the current and upcoming versions of Eurocode 3 or 
simply EC3 [3,4]) –, their use remains prohibitive for routine applications. This stems mostly from the 
fact that (i) the computational effort required is still quite high and (ii) the vast majority of designers 
lack the appropriate theoretical background. Thus, the most “traditional” approach, based on first-order 
internal forces and moments and individual member checks through beam-column interaction formulae, 
continues to be widely adopted by practitioners. Nevertheless, since the interaction formulae must 
incorporate all relevant second-order and plasticity effects, an intense research activity is still going on 
concerning the improvement of such formulae, which aims at making them as accurate, rational, general 
and easy-to-use as possible. 
 
As far as the design of frame compressed members is concerned, it is common practice to employ 
“column buckling curves”, an approach that requires the adoption of appropriately chosen elastic 
buckling lengths (Lcr), in order to adequately simulate the behaviour of the member within the frame 
under consideration. Therefore, since the “classical” elastic buckling length concept still plays a very 
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relevant role in the frame design and/or safety checking procedure, it is very important to define it 
properly and also to provide the means to evaluate its correct value. 
 
In the particular case of EC3, the beam-column interaction formulae appearing in both the available 
(European Pre-Norm − ENV [3]) and upcoming (European Norm − prEN [4]1) versions were developed, 
calibrated and validated (experimentally and/or numerically) almost exclusively in the context of 
isolated and simply supported members (e.g., the so-called “European buckling curves” [5,6]). 
Investigations aimed at assessing the efficiency (accuracy and safety) of the application of these 
formulae to members integrated in frames, are still scarce. This stems mostly from the fact that codes 
invariably assume (implicitly) that the frame behaviour can be adequately simulated through the choice 
of appropriate (i) buckling lengths and (ii) equivalent moment factors (Cm). However, it seems fair to say 
that the specific issues related to the actual choice of such buckling lengths and equivalent moment 
factors can seldom be found in the literature. 
 
This paper addresses issues related to the application of the EC3 buckling formulae to compressed 
members (columns and beam-columns) integrated in plane frames. The chief objective of this work is to 
present and discuss results that will (i) contribute to a better understanding of the formulae fundamentals 
and (ii) pave the way to the establishment of guidelines to use them more efficiently. It is worth noting 
that only the member in-plane behaviour associated with major axis bending is dealt with and, moreover, 
that particular emphasis is given to the importance, in terms of both safety and accuracy, of appropriately 
choosing the values of Lcr and Cm. 
 
Initially, one tackles the safety checking of columns (uniformly compressed members) integrated in 
frames. After a brief review of the EC3 buckling provisions, attention is paid to the identification and 
clarification of a number of ambiguities that are commonly associated with the application of the 
buckling length concept to frame members. Then, one shows that, provided that the buckling lengths 
are “correctly determined”, only the safety of one particular column − designated henceforth as “critical 
column” − needs to be checked. This finding provides valuable insight concerning the frame overall 
behaviour and, in particular, makes it possible (and fairly easy) (i) to identify and/or strengthen the 
frame “weaker” members and also (ii) to develop a frame optimisation procedure. 
 
Next, the design and safety checking of beam-columns (members subjected to compression and bending) 
integrated in frames is dealt with, namely by discussing the so-called Method 1 and Method 2 
beam-column interaction formulae appearing in EC3-prEN [4]. Besides addressing issues concerning the 
choice of the appropriate Lcr and Cm values, one also proposes an alternative approach to the use of the 
above formulae, which involves the use of internal force and moment values that are obtained from 
genuine second-order elastic analyses of “ideal” (initially “perfect”) frames − this approach does not 
require the incorporation of initial imperfections in the frame analysis. 
 
Finally, it is still worth mentioning that the concepts and procedures presented throughout this paper are 
illustrated by means of their application to simple (two-bar) structural systems. Moreover, in order to 
assess the validity of these concepts and procedures, one compares the member strength estimates 
yielded by them with “exact” results, i.e., results obtained from second-order elastic-plastic (plastic 
zone) finite element analyses, which (i) incorporate standard initial geometrical imperfections and 

                                                 
1 At this moment, there is only a “preliminary” (but practically “final”) version of the upcoming EC3 document. 
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residual stresses and (ii) are performed using the commercial code ABAQUS [7]. The results of this 
(obviously limited) comparative study are very promising, in the sense that they provide clear 
evidence that the proposed approaches and methodologies consistently yield accurate and 
conservative strength estimates. On the basis of the above findings, it is possible to draw several 
important conclusions and to anticipate the formulation of rather general guidelines for the rational 
design and safety checking of plane steel frames − to be subsequently validated, of course. 
 
 
2.  DESIGN AND SAFETY CHECKING OF COLUMNS INTEGRATED IN FRAMES 
 
2.1 Buckling Resistance According to Eurocode 3 
 
According to EC3, the safety of columns with class 1, 2 or 3 cross-sections is ensured by the 
condition 
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where NEd is the acting compressive force design value, Nb,Rd is the flexural buckling resistance, 
Npl=Afy is the plastic axial force (A is the cross-section area and fy is the characteristic yield stress), 
γM1 is the partial resistance factor for member instability and χ is the reduction factor for flexural 
buckling, which takes into account the influence of the geometrical and material non-linear effects 
and member imperfections. The value of χ is obtained from the appropriate buckling curve, which is 
defined by the expressions  
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where α is an imperfection factor, the value of which characterises each buckling curve, and 
 

 crpl/NNλ =  (3) 

is the column normalised, (non-dimensional) slenderness − Ncr=π2EI/Lcr
2 is the elastic critical axial 

force, Lcr is the column critical buckling length, I is the cross section second moment of area about 
the relevant axis and E is Young’s modulus. 
 
It is important to draw the reader’s attention to the fact that the key step in the safety checking 
procedure defined by Eq. (1) is the evaluation of the critical buckling length Lcr (or, equivalently, of 
Ncr). In fact, once Lcr is known, the calculation of all the other parameters involved is extremely easy 
and quite straightforward. However, it will be shown in the next section that the application of the 
buckling length concept to members integrated in frames can lead to some rather curious and 
unexpected results − in fact, this concept is only well established and perfectly unambiguous for 
isolated uniform members [8,9]. 
 
2.2 Buckling Length of Columns Integrated in Frames 
 
Although the buckling length concept has been extensively covered in the structural stability 
literature (e.g., [8,9]), its application to members integrated in frames is by no means obvious − it 
still raises novel issues and poses interpretation problems [10,11]. In fact, it is fair to say that the 
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difficulties associated with the proper use of the buckling length concept in frame members have led to 
a current trend that advocates either (i) its elimination from the design rules (e.g., [12-16]) and/or (ii) 
its replacement by global frame parameters and “frame stability curves” [17,18]. 
 
The (critical) buckling length Lcr of a uniformly compressed bar with constant cross-section is 
commonly defined as: 
 
(i) The length of a fictitious isolated and simply supported, but otherwise identical, column that 

buckles for the same axial force value Ncr=π2EI/Lcr
2. 

(ii) The distance between two consecutive inflection points (i.e., points of zero moment) of the 
corresponding buckling mode w ,which is given by [19] 
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where x is a coordinate along the member axis and A1–A4 are constants depending on the column 
boundary conditions. By differentiating Eq. (4) twice with respect to x, one obtains a sinusoidal 
function with a period equal to 2Lcr, thus proving that the distance between two consecutive 
inflection points is half the period, i.e., exactly Lcr. 
 
Since the above definitions apply for columns integrated in frames, a rigorous evaluation of their 
buckling lengths requires the performance of a linear stability analysis of the whole frame [20], 
which (i) must account for the axial forces acting on all the columns and (ii) provides the frame 
critical load parameter value Λcr. Then, the critical axial force for each column is given by 
 
 icricr, NΛN =   (5) 

where N i is the corresponding reference axial force (i.e., associated with Λ=1), and leads to the 
determination of its buckling length, which is obtained from the expression 
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On the basis of Eq. (6) it is possible to establish the relation between the Lcr values of two columns 
belonging to the same frame (for a particular load combination), which reads 
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and shows that the buckling lengths of all the frame columns are related to each other through their 
(i) flexural stiffness values EI and (ii) reference axial forces N . This particular feature reveals that 
frame members with large EI and/or small N  values tend to exhibit rather high Lcr values. For 
illustrative purposes, consider the inverted L-frame depicted in Figure 1(a), subjected to two 
compressive loads P1 and P2. Figures 1(b) and 1(c) display the K-factors (Ki=Lcr,i/Li) associated with 
each compressed member, obtained from exact linear stability analyses, for several load and bending 
stiffness combinations. One notices that, as predicted by Eqs. (6) and (7), decreases in P2 and (EI)2 
lead to higher K2 and K1 values, respectively. 
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This example clearly illustrates that the application of the buckling length concept to members 
integrated in frames may lead to unexpected results. Note also that, although the frame is braced (and, 
thus, classified as “non-sway”), the column K-factor can be (much) higher than 1. However, it must 
be stressed that these results stem from the fact that one is somewhat “mixing” the buckling 
behaviours of frames and isolated columns. For instance, Figure 1(c) shows that an (EI)1 increase 
leads to a growth in both Ncr,1 (obviously, because the flexural restraint is higher for column 2 and 
one has P1=P2) and K1 − the (EI)1 increase is much more relevant that the Ncr,1 one. 
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Figure 1. Inverted L-frame (a) geometry/loading and K-factors for (b) (EI)1=(EI)2 and (c) P1=P2 

 
These examples clearly illustrate that the application of the buckling length concept to frame 
members may lead to unexpected results. Notice that, although the frame is obviously classified as 
“non-sway”, the K-factors can be much higher than 1. However, it should be highlighted that these 
results stem from the fact that one is trying to determine “the length of a fictitious isolated and 
simply supported (but otherwise identical) column that buckles at the axial force level defined by the 
frame instability” – for instance, if P1=P2 and (EI)2 is kept constant, it is obvious that Ncr,1 increases 
with (EI)1, although one also observes a K1 increase (see Figure 1(c)). 
 
Moreover, from Eqs. (3) and (5), one readily concludes that the relation between the normalised 
slenderness values of columns i and j is given by 
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which shows that the λ  values of all the frame columns are related to each other through their relative 
Npl and N  values. This leads to a quite curious result, namely that the column that is closer to 
reaching Npl is the most “slender” one, i.e., has the highest λ  value. This result has the following 
implications: 
 
(i) Among the members exhibiting the same Npl value, the one acted by the lowest axial force 

NEd is the most “slender”. 
(ii) Among the members acted by the same axial force, the one exhibiting the highest Npl value is 

the most “slender”. 
 
Since high λ  values imply low Nb,Rd values, such members are often regarded as “weak”, in the 
sense of “highly susceptible to second-order effects”, although this perception seems to disagree 
with the fact that they may be subjected to low NEd values or display high Npl values. Although these 
(apparently) paradoxical conclusions are addressed and explained later in the paper, it is important to 
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emphasise right away that, in the case of frame members, a high λ  value does not necessarily imply 
a “low buckling resistance” or “ high susceptibility to second-order effects” − it merely indicates that 
the member critical axial force is, in the specific context of the loaded frame under consideration, well 
below the associated plastic axial force (recall Eq. (3)). It follows that, in order to adequately assess 
the susceptibility of a given frame to second-order effects, it is necessary to define a “global” 
parameter. In the next section, such parameter, the “frame slenderness”, is presented and discussed. 
 
2.3 The Concept of Frame Slenderness 
 
The concept of “normalised (non-dimensional) slenderness”, traditionally used in the context of 
compressed structural elements (columns, beams, plates, etc.), can be readily extended to frames, by 
resorting to the definition [18,21]2 
 

 cryf /ΛΛλ =  (9) 

where Λcr is the frame critical load parameter and Λy is the frame “yielding” load parameter, which 
is associated with the yielding of the first compressed member in the whole frame, due to axial 
force alone (i.e., the one first reaching its plastic axial load), and is defined by 
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where n is the number of frame compressed members3. Both Λcr and Λy must be related to the same 
load combination and, for an “ideal frame” (i.e., geometrically/materially perfect and with no first or 
second-order bending moments acting on its members), 1λf > (<1) indicates that frame buckling 
precedes (follows) the attainment of the plastic load in any member. Then, one may express the 
load-carrying capacity or “resistance” of an “ideal frame” (ΛR) in terms of the frame reduction 
factor χf 
 

 ΛR = χf Λy (11) 
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It is worth noting that the variation of χf with fλ is analogous to its “ideal column” counterpart (Eq. 
(2), making α=0). By incorporating (5) and (10) into (9), one concludes that 
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i.e., that fλ is precisely the smallest among the λ  values of all frame columns. 
 
A nice feature of the frame slenderness concept resides in the fact that, like for isolated columns, the 
designation “slender frame” means “frame susceptible to second-order effects”, thus making it possible 
to circumvent the problems associated with the interpretation of the buckling lengths and normalised 
slenderness values of each individual column, which was explained in subsection 2.2. Moreover, the 
frame slenderness concept deserves a few important remarks: 
                                                 
2 It is worth noting that this concept also appears in the EC3-prEN [4], defined as “relative slenderness of the structure”. 
3 Although the tensile members can be taken into account when determining Λcr, they must not be involved in the 

calculation of Λy − the safety checking of the tensile members has to be performed separately and independently. 
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(i) Like for isolated members (e.g., columns, beam-columns), the calculation of fλ does not take 
into account the various member bending moments and shear forces. Moreover, it is 
theoretically possible to obtain any fλ value associated with a given Λcr, by merely changing the 
plastic axial forces (Npl) of the frame members, i.e., changing Λy. 

(ii) Since, in most situations, the first and second-order member axial force values are almost 
identical, Λy can be determined from Eq. (10), which is based on first-order axial forces. 

(iii) It might be argued that, since Λy underestimates the frame plastic load-carrying capacity, a 
“plastic load parameter” Λpl, corresponding to the formation of a complete frame collapse 
mechanism, could be used instead. However, because the determination of such parameter is 
not at all easy and the main goal behind the use of fλ  is just to assess the susceptibility of the 
frame to second-order order effects, one adopts only Λy in this work. 

(iv) It is important to check whether the compressed members that yield for Λ=Λy also participate in 
the frame critical buckling mode (associated with Λ=Λcr). This ensures that Λcr and Λy concern 
the same structural system or sub-system. 

 
2.4  Column Design and Safety Checking 
 
The design or safety checking of columns integrated in a frame is performed by means of Eq. (1). 
Using Eqs. (2), (3), (5) and introducing the design load parameter iiEd,Ed N/NΛ = , any frame column 
i must satisfy the condition 
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where ncr=ΛEd/Λcr and it is important to realise that the only parameter that changes from column to 
column is Ψi. The curves depicted in Figure 2 provide the variation of Ψ with λ , for (i) an “ideal” 
column and (ii) the EC3 column buckling curves a–d [3,4]. Because Ψ grows monotonically with λ  
in all these curves, one readily concludes from Eq. (14) that the column with the lowestλ  (=λ min) is 
the one governing the safety checking of the whole frame − such column will be hereafter designated as 
“critical” and denoted by (⋅)c

4. Moreover, from Eq. (13) one also deduces that the critical column λ  
value ( λ c) is equal to the frame slenderness value (i.e., λ c=λ min= λ f). Although, strictly speaking, 
the above conclusions are only one hundred per cent true whenever the same buckling curve applies 
to all columns, it seems quite safe to say that, when performing the design or safety checking of a 
given frame, columns with λ >>λ f do not need to be checked − they do not govern the frame safety 
checking and should be viewed as “over designed”, as far as strength is concerned. 
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Figure 2. Variation of Ψ with λ  for (i) an “ideal” column and (ii) the EC3 curves a–d 

                                                 
4 Obviously, a frame may have several critical columns, all of them sharing λ min. 
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On the other hand, since the critical column always exhibits the lowest λ  value (if the same 
buckling curve applies for all columns), it is possible to conclude, on the basis of Eqs. (5), (8), (13), 
that this critical column is the one closest to reaching the plastic axial force Npl=Afy. Indeed, one has 
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Consequently, a frame in which all columns (i) exhibit the same cross-section area and steel grade and 
(ii) are governed by the same buckling curve, the critical column is always the one acted by the 
highest axial force, regardless of its length. 
 
If the columns are governed by different buckling curves (a usual case), one must consider the 
possibility that the critical column may have a λ  value higher than λ min = λ f. As an example, 
consider a column with λ =λ min = 2.0 and governed by curve a (Ψ=1.783). This column will not be 
critical if, for instance, there is another column (i) governed by curve d and (ii) having λ < 6.2 − one 
will then get Ψ<1.783. The charts shown in Figure 3 can be used to detect the situations in which 
λ c>λ min = λ f: each of them plots a set of curves providing the ratios between the λ  values of any 
two columns (columns i and j, such that λ i < λ j) that lead to identical Ψ values, when column i is 
governed by curve a (left chart), b (middle chart) or c (right chart) − obviously, a column governed 
by curve d is always the critical one, since it exhibits the lowest Ψ function (see Figure 2), and no 
chart is needed. In the previous example, column i is governed by curve a, which means that one 
must consider the left chart, and column j by curve d. Then, the “d” curve of the chart provides, for λ i 

= 2.0, λ j/ λ i = 3.10, thus showing that column j is critical for λ j < 3.10 × 2.0 = 6.2. 
 
It is worth noting that the critical column concept provides a theoretical validation of the “frame 
stability curve” concept proposed by Cosenza et al. [18], which prescribes the use of a single 
buckling curve, together with λ f, to estimate a frame load-carrying capacity by means of Eq. (11). 
It is now clear that both concepts are equivalent provided that (i) λ c= λ min= λ f and (ii) the critical 
column buckling curve is used to calculate χf. 
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2.4.1 Frame optimisation procedure 
 
On the basis of the results just presented, one readily concludes that, in an efficiently (optimally) 
designed frame, all compressed members must satisfy the condition (see Eq. (14)) 
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which means that (i) they are all critical and also that (ii) their buckling resistances are being fully 
used (i.e., one has NEd,i=Nb,Rd,i). Such a situation can be reached by adopting the following procedure: 
 
(i) First, at the pre-design stage, one must try to ensure that the ncr=ΛEd/Λcr values (one per load 

combination) are as low as possible − obviously, they must be lower than 1. Of course, this 
means that the Λcr values must be as high as possible, which can be accomplished by properly 
bracing the members and/or by choosing sufficiently stocky cross-sections. 

(ii) For each load combination (i.e., ncr value), select the optimum values of Npl,i = Ai fy,i for all 
compressed members, which must satisfy Eq. (16)) – note that, by changing Npl,i, one alters λ i 
and, thus, also Ψi. The chart shown in Figure 4(a) provides valuable help to perform this task, as 
it plots the optimum npl,i=NEd,i/Npl,i values as a function of ncr, for an “ideal” column and the EC3 
buckling curves a–d, adopting γM1=1.1 − a npl,i value above (below) the curve under 
consideration corresponds to an unsafe (safe) design5. On the other hand, the chart displayed in 
Figure 4(b) provides the optimum λ i

 values − a λ i value above (below) a given curve is 
associated with safe (unsafe) designs. 

 
Since the above procedure must be carried out for each load combination, it is virtually impossible to 
design the frame so that Eq. (16) holds for all members and load combinations. However, the use of the 
concepts on which this approach is based enables a much more rational frame design and, in addition, 
provides valuable insight on the frame structural behaviour – e.g., the “critical” and “over-designed” 
compressed members can be easily spotted and, if necessary, efficiently redesigned. 
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5 Note that a low ncr value implies that the column can almost reach its plastic strength, i.e., that the corresponding 

optimum npl,i value is very close to 1/γM1≈0.9. 
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It is well known that, like in the case of isolated members, an efficiently designed frame exhibits 
members with cross-sections displaying high second moments of area I and low areas A (i.e., high 
radii of gyration). However, due to either limitations in the range of commercially available profiles, 
the occurrence of local buckling phenomena or even architectural demands, it is often not possible 
to obtain any desired I−A combination. Therefore, the member I values are inevitably modified 
during the performance of the optimisation procedure − if these modifications are significant, it will 
be necessary to recalculate Λcr and restart the whole procedure. 
 
For illustrative purposes, let us consider the central column of the “simple construction” frame 
(continuous columns and hinged beam-to-column joints) depicted in Figure5, which comprises four 
equal-length uniformly compressed segments. Assuming that the column has been already 
pre-designed, the current goal is to reduce the cross-section area of each segment for the load case 
under consideration ( N 1=P, N 2=2P, N 3=3P, N 4=4P). Supposing, for the sake of simplicity, that 
the same buckling curve governs all column segments, the optimisation procedure involves the 
following steps: 
 
(i) Performance of a linear stability analysis of the whole column, thus obtaining Λcr and ncr. 
(ii) Calculation of all the segment λ  values (λ 1–λ 4). Since the same buckling curve applies, they 

are all critical if λ 1=λ 2=λ 3=λ 4 (=λ f) − from Eq. (8), this holds true if Npl,2 = 2Npl,1,Npl,3 =3Npl,1 
and Npl,4 = 4Npl,1, regardless of their lengths and support conditions. 

(iii) Calculation of the “optimum” npl value corresponding to ncr for just one (any) segment, by 
using the chart in Figure 4(a) − if the Npl ratios mentioned in the previous item are retained, no 
calculations involving the other column segments are necessary. 

 
P  P

P P

P P

P P

P 

P 

P 

P  

 
Figure 5. Illustrative example: simple construction frame 

 
Notice, once more, that if the above procedure modifies the cross-sections I values significantly, it is 
indispensable to recalculate Λcr and redo the whole procedure. Moreover, if the segments are 
governed by different buckling curves, some extra care is required because some of the segments may 
not be critical for λ 1= λ 2= λ 3= λ 4. Finally, it is important to stress again that the conclusions drawn 
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here are exclusively based on the use of Eq. (16) with Ψi obtained from the EC3 buckling curves − 
this means that they may not reflect the actual physical behaviour of real frames. 
 
2.4.2  Parametric study 
 
In order to assess the validity of the “critical column concept”, a parametric study was carried out 
for the simple plane structural systems (or “frames”) shown in Figure 6: (a) a simple construction 
unbraced frame with a rigid beam and (b) an L-shaped frame with both members compressed. The 
aim of this study consists of comparing the strength estimates obtained by means of the critical 
column concept with “exact” ultimate (collapse) loads Λu, yielded by second-order plastic-zone finite 
element analyses, performed in the code ABAQUS [7]. The two flexible members in each frame 
(members 1 and 2) are HEB300 hot-rolled profiles made of S235 carbon steel and are acted by axial 
compressive forces P1 and P2. Only in-plane (major axis bending) behaviour was allowed and 
several geometry/loading combinations were considered, identified by the values of μ (length ratio), 
ρ (axial load ratio) and λ f (frame slenderness), parameters defined as 
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For each pair of ρ–μ values, several L2 and L1=μL2 values were considered, in order to obtain a 
sufficiently large set of λ f values. The frames analysed ranged from rather “stocky” (λ f = 0.2) to 
quite “slender” (λ f=3.0) and over 280 cases were dealt with − all the selected pairs of ρ–μ values are 
given in Table 16. 
 

P1 P2

L1 
L2 

 
P2 

L1 

L2 

P1

 
 (a) (b) 

Figure 6. Structural systems employed in the parametric study:  
(a) simple unbraced frame with a rigid beam and (b) L-shaped frame 

 
Table 1. Selected pairs of ρ–μ values: (a) simple unbraced frame and (b) L-shaped frame 

μ  
ρ  0.1 0.3 0.5 0.6 0.66 1 1.5 2 3 

0.5   (b)   (b)  (b)  
1 (a) (a) (a),(b) (a) (a) (a),(b)  (b)  

1.5 (a) (a)  (a)  (a) (a) (a) (a) 
2 (a) (a) (b) (a)  (a),(b) (a) (a),(b) (a) 
3 (a) (a)  (a)  (a) (a) (a) (a) 

10 (a) (a)  (a)  (a) (a) (a) (a) 
 
                                                 
6 Due to the particular geometry of the sway frame, only cases corresponding to ρ≥1 were dealt with. 
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The second-order plastic-zone analyses, performed in the finite element code ABAQUS [7], 
employed B31 beam elements and involved the specification of several cross-section integration 
points, indispensable to model the residual stresses distribution accurately [21]. All the frame 
members contained the initial bow imperfection and residual stress distribution shown in Figure 7 
and an elastic-perfectly-plastic stress-strain law (i.e., with no strain hardening) was adopted to model 
the steel material behaviour (E = 210 GPa, ν = 0.3 and fy = 235 MPa). In order to avoid unnecessary 
modelling difficulties, the cross-section web-flange radii were neglected. 
 

±0.5fy 

e0=L/1000  
Figure 7. Frame member initial geometrical imperfection and residual stress distribution 

 
The results obtained for the two frames are summarized in the diagrams presented in Figure 8. Each 
diagram shows all the results concerning each frame and provides the variation of the frame ultimate 
load reduction factor χf=Λu/Λy with λ f. Also depicted in each diagram are (i) the EC3 buckling curve 
governing the major axis flexural buckling behaviour of an HEB300 profile (curve b) and (ii) the 
“ideal” column/frame curve. Before analysing the results, one should recall that, since all columns 
exhibit identical cross-sections (same geometry, steel grade and buckling curve), the critical column is 
the one acted by the higher axial force − i.e., column 1 (column 2) if ρ≥1 (ρ≤1). Moreover, the frame 
reduction factor χf is always equal to its critical column counterpart χc, i.e., one has 
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which stems from the equivalence of the “critical column” and “frame stability curve” concepts, 
whenever the same buckling curve is adopted for all columns − recall subsection 2.4. 
 
The observation of the results displayed in Figure 8 prompts the following remarks: 
 
(i) Virtually all results lie “not too much” above the buckling curve b, which means that the use of 

this buckling curve leads to conservative and fairly accurate strength estimates. All the (very 
few) unsafe predictions occur for λ f <0.2 and stem mostly from neglecting strain-hardening. 
On the other hand, some excessively conservative estimates take place for either λ f≈1 or 
“odd” frame geometries (e.g., μ=0.1) − although these particular estimates cannot be sorted out 
from Figure 8, all the separate results are available in reference [21]. 

(ii) In view of the above results, it is fair to say that, at least for the particular cases investigated, the 
concepts of “critical column” and “frame stability curve” have been validated. This means that, if 
one performs only the safety check of the critical column, by means of the buckling curve that 
governs its behaviour (curve b in this case), one is led to accurate and safe frame strength 
estimates and, therefore, no other column needs to be checked. It is worth noting that, as 
anticipated in subsection 2.4, this statement also holds true if the critical column is the shorter 
one − all the cases in which one has either (i) ρ>1 and μ<1 or (ii) ρ<1 and μ>1. 
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Figure 8. Critical column results: (a) simple unbraced frame and (b) L-shaped frame 

 
Finally, one last word concerning the reduction factor of the non-critical column χnc, which has not 
been plotted in Figure 8 and can be calculated on the basis of χc, by using the relations 
 

 ( )1/ρ ; ρmin
N
N

N
fA 

 
fA 

N
χ
χ

c

nc

cu,

y

y

ncu,

c

nc ===  (19) 

Therefore, one has always χnc<χc, which is a direct consequence of the fact that the non-critical 
column is acted by a lower axial force at collapse. 
 
2.4.3  Particular case: braced frames 
 
Let us now address the particular case of columns integrated in braced (non-sway) frames, for 
which it is routine practice to assume that their buckling lengths can be conservatively taken as 
equal to the distance between the corresponding lateral supports (“system length”) − for instance, 
such a simplifying assumption is stated in clause 5.5.1.5(1) of the EC3-ENV [3]7. However, one 
should be aware that this approach is potentially dangerous when the critical member Ncr value is 
overestimated, because it leads to lower (and, therefore, unsafe) λ c values − recall the inverted 
L-frame depicted in Figure 1(a), for which the K-factor can be considerably higher than 1. 
 
For illustrative purposes, one analyses next the in-plane behaviour (major axis bending) of the inverted 
L-frame with hinged supports depicted in Figure 9. Once again, the frame members are HEB300 
profiles made of S235 steel. In order to have medium λ  values, L = 10 m was adopted. By 
assuming K = 1 in both members, one is led to λ 1 = 0.819, λ 2 = 1.639, χ1 = 0.7125 and χ2 = 0.2959 
and one would, therefore, believe that (i) the frame is able to withstand any loading if NEd ≤ Nb,Rd 
holds for both members and (ii) the optimum loading is characterised by 
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However, the performance of a linear stability analysis of the whole frame yields, for this particular 
loading, K1 = 1.133, K2 = 0.879, λ 1 = 0.929, λ 2 = 1.441, χ1 = 0.6428, χ2 = 0.3649 and 
 
                                                 
7 Note, however, that it does not appear in EC3-prEN [4]. 
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which indicates that the assuming K = 1 leads to an overestimation of the frame ultimate strength by 
about 11%. Note also that one has K1=1.133 >1 for the critical member (member 1, since λ f = λ 1 
<λ 2), which corresponds precisely to the potentially dangerous situation identified above. Moreover, 
higher errors are obtained if the length of member 1 is reduced − e.g., 19% for L1 = 5 m and 24% for L1 

= 2 m. 
 

2L

 

P1 

P2 

L

 
Figure 9. Braced frame illustrative example: inverted L-frame with hinged supports 

 
The curves depicted in Figure 10 represent all the pairs of normalised ultimate load values 
Nu,1/Npl–Nu,2/Npl obtained by (i) using curve b and K=1 in both members, (ii) using curve b and 
“exact” K values (yielded by frame linear stability analyses) and (iii) performing in ABAQUS 
second-order plastic zone (“exact”) analyses that incorporate member imperfections (see subsection 
2.4.2). Moreover, in order to ensure a meaningful comparison between these three approaches, γM1=1 
was adopted in the first two. 
 
After observing the results presented in Figure 10, it is possible to conclude that: 
 
(i) Assuming K = 1 leads to the dashed horizontal and vertical lines and, as already mentioned, the 

ultimate load of each member becomes independent of the loading (ρ value). 
(ii) The comparison between the “K = 1” and “exact K” curves shows that the former approach (ii1) 

mostly leads to extremely conserv ative strength estimates (particularly if N1 is small), but (ii2) 
also yields unsafe results in the vicinity of ρ = 2.408. 
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Figure 10. Inverted L-frame ultimate load values 
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(iii) Since the frame is statically indeterminate and the buckling curve always underestimates the 
actual frame collapse load (see Figure 8), the “exact” analyses (“ABAQUS” curve) are somewhat 
higher than the “exact K” strength estimates and considerably higher than the “K = 1” ones. This 
fact “masks” all the (theoretical) errors associated with the adoption of K = 1 − the authors 
investigated a large number of different frame geometries and loadings and found only a few 
slightly unsafe results, all of them corresponding to frames with odd geometries (e.g., one 
member much longer that the other). 

(iv) In view of the above items, it can be successfully argued that the choice of K = 1, although 
theoretically incorrect, does not lead to unsafe designs for situations of practical interest. 

(v) Finally, it is still important to mention that the “kink” exhibited by the “exact K” curve at ρ = 1 
is due to the fact that this point corresponds to a critical member switch: member 1 is critical for 
ρ>1 and member 2 for ρ<1 (obviously, both members are critical for ρ = 1). 

 
 
3.  SAFETY CHECKING OF BEAM-COLUMNS INTEGRATED IN FRAMES 
 
3.1  The Method 1 and Method 2 Beam-Column Interaction Formulae 
 
As far as Europe is concerned, the ongoing research on the design and safety checking of steel 
beam-columns has been taking place in the context of the activities of the Technical Committee 8 
(“Stability”) of the European Convention for Constructional Steelwork (ECCS). This research work 
led to the inclusion of two distinct sets of interaction formulae in EC3-prEN [4], which are identified 
by the designations “Method 1” and “Method 2”8. The Method 2 formulae, which were developed by 
an Austrian-German research team [22-24], aim mostly at a simple and user-friendly format and, thus, 
involve only a fairly small number of fully empirical parameters − they have no physical meaning 
and values are obtained through calibration procedures, i.e., the comparison with numerically 
(mostly) and experimental results. On the other hand, the aim of the Method 1 formulae, developed by 
a French-Belgian research team [25-27], are two-fold: (i) to achieve a higher accuracy and also (ii) to 
assign a clear physical meaning to as many parameters as possible. It seems fair to say that there is a 
kind of “trade-off” between simplicity (Method 2) and accuracy/transparency (Method 1). In the 
particular case of the in-plane behaviour of compact (class 1 or 2) I-section beam-columns subjected to 
major axis bending, the Method 1 and Method 2 interaction formulae read 
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where Wel,y and Wpl,y are the cross-section elastic and plastic moduli. Besides satisfying one of the 
above interaction formulae, the resistance of the member end sections must be checked by using 

                                                 
8 The reader should be warned that these sets of beam-column interaction formulae have been often designated in the 

literature as “Level 1 formulae” and “Level 2 formulae”. Unfortunately, the former correspond to “Method 2” and the 
latter to “Method 1” − failing to take this “switch” into account will lead to considerable misunderstanding. 
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appropriate N-M plastic interaction formulae. However, when applying the interaction formulae 
defined by Eqs. (22) and (23) to frame members, the following two aspects deserve special attention: 
 
(i) Although it was demonstrated that, in frames having only axially compressed members, the 

“critical column” may be easily and quickly identified, such feature no longer exists when the 
frame members are also subjected to bending moments (i.e., are beam-columns). This fact 
raises the question of whether it is necessary to calculate the exact buckling lengths required to 
apply the beam-column interaction formulae, particularly in the case of members acted by small 
axial forces − recall that large Lcr and, therefore, low χ values will be obtained. This issue will be 
further addressed later in this paper. 

(ii) The accuracy of the above interaction formulae is strongly dependent on the choice of an 
appropriate equivalent moment factor value Cmy. However, it is very important to emphasise that 
the Method 1 and Method 2 formulae were developed on the basis of slightly different 
“equivalent moment” concepts. Indeed, for simply supported members, Cmy,1 and Cmy,2 concern 
sinusoidal and uniform equivalent moments, which means that one has, respectively9, 
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where max,I
EdM and max,II

EdM are the maximum first and second-order moments acting on the 
beam-column, for a given axial load NEd. Both the Method 1 and Method 2 formulae include a more 
or less extensive set of Cm expressions or values, all of which have been derived in the context of 
isolated members (mostly simply supported) and, therefore, cannot be readily applied to members 
integrated in frames. In order to circumvent this difficulty and avoid the need to evaluate accurate Cm 
values, an alternative approach is suggested here [28]: to incorporate each of the theoretical Cm 
expressions defined by Eq. (24) directly into the associated interaction formulae (22)-(23), thus 
yielding 
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In these formulae, it is implicitly assumed that II
Edy,M  is the maximum bending moment acting on the 

beam-column (i.e., the superscript “max” is omitted), which is obtained from a frame second-order 
global analysis that does not incorporate member imperfections − they are already accounted for by 
the interaction formulae10. An additional benefit of this approach is related to the fact that either of 
the new formulae tend to the commonly used cross-section plastic moment check (My,EdγM1/Wpl,yfy≤1) 
as NEd approaches zero − this is in contrast with the original formulae, defined by Eqs. (22) and (23), 
which become 

 1
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leading to the need to perform an additional end cross-section plastic checks when Cmy ≤ 1. 
                                                 
9 An in-depth discussion about this matter can be found in a recent paper by the authors [32]. 
10 If the member second-order axial forces differ substantially from their first-order counterparts (not the usual case), 

one should also replace 
EdN  by II

EdN . 
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3.2  Parametric study 
 
In order to assess the performance of the proposed beam-column interaction formulae and also to 
investigate whether it is necessary to calculate exact buckling lengths, a second parametric study 
was carried out concerning the two simple frames analysed earlier and depicted in Figure 6. 
However, the frame loading now includes a lateral load Q that induces exclusively first-order 
bending moments in the members – see Figure 11. It is worth mentioning that the rather peculiar 
L-shaped frame was selected because of one specific and rather interesting feature: no first-order 
moments appear in member 1 (only second-order ones). 
 
In this study, the strength estimates obtained by means of the proposed interaction formulae (25) are 
compared with “exact” results, obtained once more from second-order plastic-zone analyses 
performed in ABAQUS, which include the initial imperfections shown in Figure 7 in all members. 
Since the proposed formulae are based on second-order moments, it was also necessary to perform 
elastic second-order analyses of the two frames, a task that was undertaken resorting to a standard 
matrix structural analysis method using stability functions (e.g., [29,30]). One should still mention 
that both frames are classified, according to EC3-prEN, as “unbraced”, which means that 
appropriate frame geometrical imperfections (or, alternatively, equivalent lateral forces) should be 
included in their global analyses. However, for the sake of simplicity and without any loss of 
generality (only the loading would change, due to the additional equivalent lateral forces), the 
influence of this type of geometrical imperfections was disregarded in this study. 
 
Due to space limitations, only a selected (but representative) set of the results is presented in Figures 
12 and 13, respectively for the simple unbraced and L-shaped frames − all the remaining results can 
be found in [31]. This set of results corresponds to the ρ–μ combinations given in Table 2 (recall Eqs. 
(17)) and it is worth noting that they are all Massociated with situations such that (i) member 1 is acted 
by the higher axial force (ρ>1) and (ii) the maximum first-order bending moment occurs in member 
2. As before, for each pair of ρ–μ values, several L2 and L1=μL2 values were considered, thus making 
it possible to cover a sufficiently wide range of λ f values. Moreover, in order to keep the number of 
parameters involved low, it was decided (i) to take 1Mγ  = 1.0 in the interaction formulae and (ii) to 
adopt “exact” χ values in member 1 (i.e., the one subjected to the higher axial force), extracted from 
the plastic-zone results presented in Figure 8. Concerning the last issue, it is obvious that the use of 
the column buckling curves would lead to slightly lower χ values, thus making the interaction 
formulae predictions somewhat safer. 
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Figure 11. Structural systems employed in the beam-column parametric study:  
(a) simple unbraced frame with a rigid beam and (b) L-shaped frame. 
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Table 2. Selected pairs of ρ–μ values: (a) simple unbraced frame and (b) L-shaped frame 
μ  

ρ   0.5 1 2 3 

1.5  (a) (a) (a) 
2 (b) (b) (b)  
3  (a) (a) (a) 

 
Each diagram in Figures 12 and 13 corresponds to a particular pair of ρ–μ values and provides, for 
several λ f values, the pair of ultimate Q–P1 load values. The observation of the results leads to the 
following conclusions: 
 
(i) The application of the proposed formulae (Eqs. (25)), which employs (i1) exact buckling 

lengths (obtained from linear stability analyses) and (i2) elastic second-order moments 
(obtained from genuine second-order global analyses), consistently leads to rather accurate 
frame ultimate strength estimates11. As expected, the Method 1 formula provides the more 
accurate load-carrying capacity predictions12, even if the differences between the two Methods 
are always rather minute − a similar assessment was made when both formulae were applied to 
isolated members, employing exact Cmy values [32]. 

(ii) For low axial forces, the application of either formula leads to rather conservative strength 
estimates. This is due to the fact that the second-order effects are almost negligible and, 
therefore, the structures are able to withstand a loading level very close to the one associated 
with the occurrence of a first-order rigid-plastic (plastic hinge) collapse mechanism [21]. 
Naturally, this effect is more relevant in frames exhibiting low λ f values13. 

(iii) Finally, note that the majority of the (few) unsafe estimates concern the L-shaped frame and 
correspond to situations associated with high λ f and axial force values, i.e., situations in 
which moderate-to-large displacements are bound to occur − obviously, such situations are 
outside the range of validity of the elastic second-order global analyses performed (they were 
based on the use of standard stability functions). 

 

                                                 
11 Note that this statement also applies to the L-shaped frame, where no first-order bending moments act in member 1. 

This would certainly lead to some difficulties, concerning the application of the original formulae − recall that Eqs. 
(22) and (23) involve first-order bending moments. 

12 Recall that Method 2 was developed with the explicit objective of achieving a high degree of simplicity and 
user-friendliness, even at the cost of some accuracy and transparency. 

13 Concerning this aspect, it is worth mentioning that the EC3-prEN states explicitly that the buckling effects may be 
ignored in columns for which NEd/Ncr ≤ 0.04 − only the cross-section resistance needs to be checked. 
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Figure 12. Beam-column parametric study: simple unbraced frame results 
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Figure 13. Beam-column parametric study: L-shaped frame results 
 
It is still worth mentioning that if one chooses to employ Eqs. (22) and (23), adopting tabulated Cm 
values, rather than the proposed formulae given in Eq. (25), extreme caution is required since, as 
mentioned earlier, the overwhelming majority of the available Cm values and expressions were 
determined for isolated and simply supported beam-columns [32] − the misuse of these values and 
expressions may lead to considerably unsafe strength estimates [31]. 
 
Finally, a few words concerning the choice of the buckling lengths to be incorporated in the 
beam-column interaction formulae. The results displayed in Figures 12 and 13 clearly show that 
accurate frame ultimate load values are consistently obtained if one adopts exact Lcr values, even 

2 

2 
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when these values are very large and “non intuitive”, e.g., when ρ>>1 − from Eq. (7), one obtains 
Lcr,2= ρLcr,1, which means that, for instance, one has ρ=10 and Lcr,2= 10Lcr,1 if N 1=10 N 2. 
Although the authors have previously shown that underestimating such large Lcr values may lead to 
extremely unsafe strength estimates [21,31] 14 , it should be made absolutely clear that the 
underestimation of Lcr corresponds, in fact, to an overestimation of Ncr, which often leads to serious 
safety problems. Therefore, the use of exact, albeit very large, buckling lengths is strongly 
recommended. 
 
 
4.  CONCLUSION 
 
In this work, one discussed some fundamental concepts and presented a few illustrative results 
concerning the design and safety checking of columns and beam-columns integrated in plane steel 
frames − particular attention being paid to the provisions prescribed by the upcoming (European 
Norm) version of Eurocode 3. Initially, the paper addressed the ambiguities and surprising results 
that a designer may be faced with when he wishes to calculate the buckling lengths of compressed 
members belonging to frame structures. Besides clarifying a number of peculiar issues and showing 
that the “exact” buckling length values must be obtained from frame linear stability analyses, it was 
also demonstrated that a theoretically sound member safety checking procedure must necessarily 
incorporate those “exact” buckling lengths − moreover, the use of “intuitive” values (prompted by an 
“isolated member reasoning”) may lead to considerably unsafe frame strength estimates. 
 
Next, one introduced the concept of frame “critical column”, i.e., the column that governs the frame 
strength and safety checking procedure, which (i) provides valuable insight into the frame overall 
behaviour (for instance, by making it easy to spot the frame “weak” members) and (ii) may be used to 
develop a frame optimisation procedure. After addressing the identification of the “critical column” of 
a given frame, it was shown that its normalised slenderness always supplies the value of the frame 
normalised slenderness, provided that all the frame columns are governed by the same buckling 
curve. 
 
Finally, attention was devoted to the design and safety checking of beam-columns integrated in 
frames using the novel (Method 1 and Method 2) interaction formulae included in the upcoming 
version of Eurocode 3. It was shown that, at least for the simple frames dealt with in this paper, the 
inclusion of “exact” buckling lengths and equivalent moment factors (Cm) consistently leads to frame 
ultimate load-carrying capacity predictions that are both safe and accurate. However, since (i) the 
accuracy of the strength estimates provided by the formulae is strongly dependent on the choice of 
appropriate Cm values and (ii) it is rather difficult to obtain such values for frame members, an 
alternative approach to use the above formulae was proposed: to incorporate genuine second-order 
elastic bending moments, yielded by the analysis of “ideal” (initially perfect) frames. 
 
In order to assess the validity and/or efficiency of the various concepts and procedures addressed in 
this work, several illustrative examples were presented and discussed throughout the paper. They dealt 
with simple two-bar frames and the numerical results obtained were compared with “exact” values, 
yielded by second-order plastic zone finite element analyses, performed by means of the code ABAQUS 

                                                 
14 In particular, the following “intuitive” K-factors were considered: (i) K=2 for the simple unbraced frame member 

acted by the smaller axial load and (i) K=1 for the L-shaped frame horizontal member. In both cases, the interaction 
formulae yielded several rather unsafe strength estimates. 
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and including standard initial geometric imperfections and residual stresses – the proposed 
methodologies were shown to consistently yield safe and accurate strength predictions. 
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