
Advanced Steel Construction – Vol. 20 No. 1 (2024) 81–92
DOI:10.18057/IJASC.2024.20.1.9

81

STRUCTURAL MORPHOLOGY AND DYNAMIC CHARACTERISTICS
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A B S T R A C T A R T I C L E H I S T O R Y

The drum-shaped honeycomb-type III cable dome with a quad-strut layout abandons the traditional concept, incorporating a
multi-support pole concept, making it one of the most structurally diverse types of cable dome structures. Its upper chord cable mesh is
evenly divided, resulting in a simple and efficient structural design. This design approach reduces the usage of cables and struts, making
pre-stressing and tensioning construction more convenient. Furthermore, the structure exhibits good cost-effectiveness. Based on the node
force equilibrium equations, a general formula is derived for calculating the internal forces of prestressed cables and struts in the
prestressed state of the structure. Additionally, the variation of prestress distribution with geometric parameters of the cable dome
structure is analyzed. A numerical model with a span of 120 meters was established in the general finite element software Ansys to
investigate the influence of structural parameters on the structural natural frequency characteristics. Moreover, using the nonlinear
dynamic analysis method, the dynamic response of the structure under multidimensional seismic loads was compared and analyzed. The
research results indicate that the prestress distribution of the structure is reasonable, with a greater amount of prestress in the outer ring
compared to the inner ring. This observation suggests that the stiffness of the structure is primarily supported by the outer ring structure.
The structural natural modes of vibration predominantly exhibit vertical deformation, indicating that the vertical stiffness of the structure
is weaker than the circumferential direction. Furthermore, when subjected to seismic loading, the internal forces in cables and struts, as
well as the dynamic displacements of key nodes, are relatively small, demonstrating excellent seismic performance.
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1. Introduction

The concept of prestressing the entire structure was initially proposed by
the American engineer Fuller, who envisioned a structural system that remains
continuously under tension as a whole while experiencing discrete areas of
compression. The fundamental idea behind this concept is that "compressed
islands exist in the ocean of tension" [1]. In the 1980s, the American engineer
Geiger further evolved and developed Fuller's ideas, introducing the
Geiger-type cable dome structure, which was successfully applied in the
construction of the sports arena and fencing hall for the 1988 Seoul Olympics
[2,3]. To address the issues of weak out-of-plane stiffness and limited capacity
to withstand asymmetric loads in the Geiger-type cable dome structure, the
American engineer Levy proposed the Levy-type cable dome structure. This
design incorporates triangular spatial trusses internally, significantly
enhancing the overall stability of the structure. The Levy-type cable dome
structure found successful application in the main stadium, Georgia Dome,
during the 1996 Atlanta Olympics [4]. However, this structural arrangement
increases the number of struts, due to the dense grid division in the inner ring,
making the construction of inner ring nodes and membrane installation more
challenging [5].

In order to address the issues encountered in the two classic cable dome
structural forms, in 2005, Shilin Dong et al. proposed the Kewitte-type cable
dome and two hybrid cable domes, incorporating the arrangement patterns of
various grid shell structures into the cable dome structures [6]. All of these
structures feature advantages such as uniform grid division and even stiffness
distribution. In 2010, Shilin Dong et al. introduced an innovative spatial
structural system that combines a single-layer grid shell with a cable dome [7].
Subsequently, Shilin Dong et al. introduced a new type of honeycomb-type
cable dome with a multi-strut layout structural system [8,9]. In this cable dome
design, the upper chord consists of ridge cables arranged in a honeycomb
pattern, while multiple support struts connect to the lower chord nodes. After
the introduction of the innovative research on the honeycomb-type cable dome
structural system, Shilin Dong and Hui Lv et al. have recently proposed the
drum-shaped honeycomb-type cable dome with a quad-strut layout [10]. This
concept deviates from the traditional cable dome concept that typically
involves tension cables and compressed strut islands. Instead, it incorporates
the idea of multiple support struts, resulting in three cable dome structural
forms: the drum-shaped honeycomb-type I, Ⅱ, and Ⅲ cable domes with a
quad-strut layout. The analysis methods for determining the prestressed state

of these three cable dome structures have also been explored.
The cable dome structure is a typical flexible structure where its structural

stiffness is primarily provided by prestressing. Therefore, the analysis of
prestressed modes and structural morphology is the foundation and key to the
theoretical analysis of cable dome structures. Pellegrino et al. proposed the
theory of equilibrium matrices [11,12]. For structures with known geometric
dimensions and topological relationships, the relationship between the
structural member topology and internal forces can be expressed in matrix
form using node equilibrium equations. Furthermore, Xingfei Yuan et al.
introduced the concept of globally feasible prestress modes for cable domes,
taking advantage of the structure’s symmetry. They employed the method of
quadratic singular value decomposition to determine prestress modes that
would ensure geometric stability in cable dome structures [13].

Regarding cable dome structures, which are characterized by flexibility,
lightness, large spans and significant nonlinearity, researchers in the field have
conducted extensive studies on their dynamic characteristics. Pengcheng Li et
al. explored the natural vibration characteristics of the cable-stiffened
single-layer latticed shell through modal analysis. They also analyzed the
structure's nonlinear behavior when subjected to the El Centro earthquake
waves [14]. In a separate study, Zhenwei Li et al. investigated the internal
connections between multiple square loop-string cables and grid beams,
providing valuable insights for seismic-resistant structures [15]. Hao Zhang et
al. analyzed the dynamic response of the cable dome structure, specifically
focusing on the consequences of local cable or strut failures, distinguishing the
importance of structural cables and struts [16]. Chi Zhu et al. have introduced
a method aimed at enhancing the efficiency of structural dynamic testing and
propose a dynamic response reconstruction method that accounts for step
excitation, alongside a corresponding high-precision non-measurement point
selection strategy [17]. However, regarding the drum-shaped honeycomb-type
cable dome, current research has only focused on the static performance of the
structure.

Accordingly, this paper aims to further investigate the mechanical
characteristics of the novel drum-shaped honeycomb-type Ⅲ cable dome with
a quad-strut layout. Based on the node equilibrium equations and under the
conditions of symmetry and periodicity, analytical formulas for the prestressed
cable forces in the structure were derived. Additionally, the paper analyzed the
influence of various design parameters on the distribution of prestressing
forces within the structure. By considering a 120 m cable dome as an example,
the paper analyzed the natural frequency characteristics of the structure and
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investigated the impact of various structural parameters on these
characteristics. Building upon the results of the natural frequency analysis, a
time history analysis method was employed to calculate the dynamic
responses of cable forces in different struts and the displacements of key nodes
under multidimensional seismic loads. This analysis provided valuable
insights into the structure's ability to withstand seismic forces. The research
finding provides a reference for the practical engineering design of this
specific cable dome configuration.

2. Structural configuration and pre-stress state analysis

2.1. Structural configuration

As shown in Fig. 1, the main structure of the drum-shaped
honeycomb-type III cable dome with a quad-strut layout is composed of ridge
cables, ring cables, diagonal cables, struts and rigid ring beams. In Figs. 1a
and 1b, the labels N, T, B, H, and V represent the upper chord circumferential
ridge cables, radial ridge cables, diagonal cables, ring cables and struts
respectively. The subscripted numbers indicate the concentric circles from the
inside out, while the letters indicate the types of components. Within the main
hexagonal grid of the upper chord, two diagonal cables and four struts are
arranged in a skip pattern. The lower chord nodes are positioned along the
radial axis of the main hexagonal grid, and ring cables connect each lower
chord node. Additionally, the inner upper chord ridge cable connects two
adjacent main hexagonal grids, forming secondary hexagonal grids.

For the drum-shaped honeycomb-type cable dome with a multi-strut
layout, it can be represented usingthe symbol n msH with three subscripts,
where n represents the number of circumferential divisions, m represents the
number of ring cables, and s represents the number of struts converging at the
lower chord nodes. The structure shown in Fig. 1 can be denoted by the
symbol 24 24H Ⅲ

, where III indicates the upper chord ridge cable
arrangement scheme.

(a) Schematic plan

(b) Sectional view (A-A)

Fig. 1 Schematic diagram of the 24 24H Ⅲ cable dome

The advantages of the 24 24H Ⅲ cable dome are as follows:
(1) The upper chord ridge cable grid of the 24 24H Ⅲ cable dome is

evenly divided, inheriting the advantages of simplicity and efficiency from the
drum-shaped honeycomb-type cable dome with a multi-strut layout. This
design feature allows the cable dome to adapt to a variety of circumferential
broken-line cable dome shapes, meeting the architectural design requirements.

(2) There are a total of 8 pairs of outer ring diagonal cables in the
structure. Simultaneously tensioning all outer ring diagonal cables can

effectively reduce the risk of ring cable slippage.
(3) There are 4 compression struts converging at the lower chord node of

the 24 24H Ⅲ cable dome, forming a continuous double-V spatial structure in
the circumferential direction. This spatial configuration enhances the lateral
stiffness at the upper and lower nodes. Additionally, the number of
components converging at the inner and outer upper chord nodes is 4 and 5
respectively, creating a spatial load-bearing system. This design significantly
improves the stability and load-bearing performance of the entire cable dome
structure, making it suitable for the use of a rigid roof system.

(4) The strut-to-cable quantity ratio of the 24 24H Ⅲ cable dome is only
1:1.9, which is significantly lower compared to ratios of 1:3 for Gerger-type
cable domes and 1:5 for Levy-type cable domes [18]. This suggests that the
24 24H Ⅲ cable dome is more economical, considering that the cost of cable
materials is typically higher than that of rod materials.

2.2. Analysis method of prestressed state

The 24 24H Ⅲ cable dome structure simplifies the analysis and
computation process by considering a single substructure when the spatial
arrangement meets axial symmetry conditions and is divided into n equal parts
in the circumferential direction. The analysis and computation of the
substructure should refer to the plan and section diagrams shown in Fig. 2.
The internal forces of each component should be labeled with the respective
component names. The angles between the upper chord cables, struts, diagonal
cables and the horizontal plane are denoted as ia , ib , ia , ib , i
respectively. Under the action of axially symmetric prestress, by establishing
the equilibrium equations for the nodal forces, it is possible to calculate the
relationships between the internal forces of cables and struts in the cable dome
structure. For nodes located on two symmetric axes simultaneously, a vertical
force equilibrium equation can be established. For nodes along the radial
symmetric axis, two equilibrium equations can be established. For general
nodes that do not align with a symmetric axis, three node equilibrium
equations can be established.

(a) Analysis model (plan view)

(b) Sectional view (B-B)

Fig. 2 Analysis model of the 24 24H Ⅲ cable dome
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For the 24 24H Ⅲ cable dome, there are a total of 17 types of components.
Equations (1) - (6) collectively form a set of 16 node equilibrium equations.
The number of these equations is one less than the number of unknown
internal forces in the cables and struts. Therefore, this structure is classified as
a statically determinate structure of the first degree. The nodal equilibrium
equation group is as follows:

For node 1a:
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For node 1b:
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For node 2a:
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For node 2’:
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For node 2b:
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The support reactions under prestressed conditions can also be determined
using the following equations:
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In conclusion, based on the node force equilibrium equations for a single
substructure, formulas for calculating the internal forces in various types of
cables and struts have been derived. These formulas are specifically applicable
for determining the internal force distribution in the prestressed state of the
24 24H Ⅲ cable dome with a planar projection in the shape of a circle, while
satisfying periodicity and symmetry conditions.

3. Parametric analysis of prestressed state

3.1. Structural design parameters

For the 24 24H Ⅲ cable dome with a span of L, inner ring opening size of
L0, spherical shell radius of R, rise height of f and structural thickness of h, the
simplified half-space truss, considering periodicity and symmetry conditions,
is shown in Fig. 3. The calculation formulas for the main geometric
parameters are listed in Table 1.

The thickness hi and length ∆ ia, ∆ ib of the cable dome are determined
separately using the following equations (8) and (9). The thickness h
represents the center thickness of the cable dome, while hi varies linearly
along the radial direction. ζ and ηi are dimensionless coefficients.
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As illustrated in Fig. 3, the arrangement schemes for the lower chord node
i’ of the structure includes three cases:

Case 1: The projected length of the two inner struts in the horizontal plane
radial direction is 0, as shown in Fig. 3a.

Case 2: The projected length of the two inner struts in the horizontal plane
radial direction is 2ia , as shown in Fig. 3b.

Case 3: The projected length of the two inner struts in the horizontal plane
radial direction is ia , as shown in Fig. 3c.
Based on the above, the primary design parameters for the form of the cable
dome structure include the span-to-rise ratio, thickness-to-span ratio and the
arrangement scheme for the lower chord nodes i ’ . Once these design
parameters are established, the geometric configuration of the structure can be
determined using the formulas provided in Table 1. Furthermore, the prestress
distribution within the cable dome can be determined using equations (1) to
(7).
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Table 1
Formula for calculating the geometric dimensions of the 24 24H  type cable dome (i=1, 2)

Length parameter Angle parameters
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Note: iah , ibh , iah , ibh , ih represent the height of the upper chord cables, struts and diagonal cables respectively, iaS , ibS , iaS , ibS , iS  represent the
horizontal projected lengths of the upper chord cables, struts and diagonal cables respectively.

(a) Case 1 (b) Case2 (c) Case 3

Fig. 3 The arrangement schemes for the lower chord node i’

3.2. Parametric analysis example of prestress distribution

In the parametric analysis, the span-to-rise ratio was set to 0.08, 0.09 and
0.10, while the thickness-to-span ratio was set to 0.07, 0.08, 0.09 and 0.10.
The parameter η was set to 1.0. The cable dome structure had a span (L) of
120 m, an inner ring opening diameter (L0) of 40 m, and both ∆ ia and ∆ ib

equal to 10 m. Under the relative prestress H2 = 1.0, the prestressed cable
dome structure's internal force distribution in cables and struts can be
determined. Prestressed state analysis was implemented using a custom code
developed on the Matlab platform, and the calculated results are shown in
Table 2. Through comparison with the case study, the calculated results were
found to be consistent with the results obtained from the second-order singular
value decomposition method [19].

By observing the calculated results in Table 2, the following patterns can
be summarized:

(1) When the span-to-rise ratio (f/L) and the thickness-to-span ratio (h/L)

are equal for the cable dome, and the same lower chord node arrangement
scheme is used, the internal forces in cables and struts exhibit geometrically
equal patterns under prestressed conditions.

(2) Under prestressed state, the internal forces in cables and struts,
including support reactions, increase linearly with an increasing
thickness-to-span ratio. This indicates that as the structural stiffness increases,
the internal forces in cables and struts also increase accordingly.

(3) Under prestressed state, the internal force distribution in the cables and
struts of the outer ring of the cable dome structure is significantly greater than
that of the inner ring, indicating that the structural stiffness is mainly
contributed by the outer ring structure.

(4) Among the three lower chord node arrangement schemes, Case 1 is
less affected by changes in the span-to-rise ratio and thickness-to-span ratio in
terms of internal forces in cables and struts. Case 2 is relatively more sensitive,
while Case 3 is the most sensitive to these changes.
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Table 2
The distribution of prestress in the cable dome structure under changes in geometric parameters

Parameter
f L 0.08 0.09 0.10

h L 0.07 0.08 0.09 0.10 0.07 0.08 0.09 0.10 0.07 0.08 0.09 0.10

Case 1

2H 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1N 0.21 0.30 0.41 0.52 0.13 0.21 0.30 0.39 0.08 0.15 0.22 0.30

1aN 0.24 0.35 0.47 0.60 0.15 0.25 0.35 0.45 0.09 0.17 0.26 0.35

1bN 0.07 0.10 0.14 0.18 0.04 0.07 0.10 0.13 0.02 0.05 0.07 0.10

1aT 0.09 0.14 0.18 0.23 0.06 0.10 0.13 0.18 0.03 0.07 0.10 0.13

1bT 0.10 0.15 0.21 0.27 0.06 0.11 0.15 0.20 0.04 0.07 0.11 0.15

1aV -0.01 -0.02 -0.02 -0.03 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02

1bV -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 0.00 -0.01 -0.01 -0.02

1B 0.07 0.08 0.10 0.11 0.05 0.07 0.08 0.10 0.04 0.06 0.07 0.08

1H 0.15 0.18 0.20 0.22 0.11 0.15 0.18 0.20 0.08 0.12 0.15 0.17

2aN 0.20 0.28 0.36 0.40 0.14 0.21 0.28 0.35 0.09 0.15 0.21 0.28

2bN 0.24 0.34 0.44 0.54 0.16 0.25 0.33 0.43 0.10 0.17 0.25 0.33

2aT 0.23 0.31 0.40 0.49 0.16 0.24 0.31 0.39 0.10 0.17 0.24 0.31

2bT 0.26 0.37 0.49 0.60 0.18 0.28 0.37 0.47 0.11 0.20 0.28 0.37

2aV -0.05 -0.07 -0.09 -0.11 -0.04 -0.06 -0.08 -0.10 -0.03 -0.05 -0.07 -0.09

2bV -0.04 -0.06 -0.07 -0.08 -0.03 -0.05 -0.06 -0.07 -0.02 -0.04 -0.05 -0.06

2B 0.44 0.45 0.46 0.47 0.43 0.44 0.45 0.46 0.43 0.43 0.44 0.45

X 0.64 0.73 0.83 0.93 0.56 0.65 0.73 0.82 0.50 0.58 0.65 0.73

Y -0.03 -0.08 -0.14 -0.20 0.02 -0.03 -0.08 -0.13 0.05 0.01 -0.04 -0.08

Case 2

2H 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1N 0.27 0.36 0.46 0.56 0.19 0.28 0.36 0.45 0.14 0.21 0.28 0.36

1aN 0.31 0.43 0.54 0.66 0.23 0.32 0.42 0.52 0.16 0.25 0.33 0.42

1bN 0.10 0.13 0.17 0.20 0.07 0.10 0.13 0.16 0.05 0.07 0.10 0.13

1aT 0.13 0.17 0.22 0.27 0.09 0.13 0.17 0.21 0.07 0.10 0.14 0.17

1bT 0.15 0.20 0.26 0.31 0.11 0.15 0.20 0.25 0.08 0.12 0.16 0.20

1aV -0.02 -0.02 -0.03 -0.04 -0.02 -0.02 -0.03 -0.03 -0.01 -0.02 -0.02 -0.03

1bV -0.01 -0.02 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02

1B 0.07 0.08 0.09 0.10 0.06 0.07 0.08 0.09 0.05 0.06 0.07 0.08

1H 0.18 0.20 0.22 0.23 0.15 0.18 0.20 0.21 0.13 0.15 0.18 0.19

2aN 0.35 0.44 0.54 0.64 0.27 0.35 0.44 0.53 0.20 0.28 0.36 0.44

2bN 0.37 0.48 0.59 0.70 0.29 0.38 0.48 0.58 0.22 0.30 0.39 0.48

2aT 0.35 0.44 0.53 0.62 0.27 0.36 0.44 0.52 0.21 0.29 0.37 0.44

2bT 0.43 0.55 0.67 0.79 0.34 0.45 0.55 0.66 0.26 0.36 0.46 0.55

2aV -0.09 -0.11 -0.13 -0.14 -0.08 -0.10 -0.12 -0.14 -0.07 -0.09 -0.11 -0.13

2bV -0.07 -0.08 -0.09 -0.10 -0.06 -0.07 -0.08 -0.09 -0.05 -0.06 -0.07 -0.08

2B 0.42 0.42 0.43 0.44 0.42 0.42 0.43 0.44 0.42 0.42 0.43 0.44

X 0.74 0.83 0.93 1.03 0.66 0.74 0.83 0.92 0.60 0.67 0.75 0.83

Y -0.08 -0.14 -0.20 -0.27 -0.03 -0.08 -0.14 -0.20 0.02 -0.04 -0.09 -0.14

Case 3

2H 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1N 0.33 0.42 0.52 0.62 0.26 0.34 0.42 0.51 0.20 0.27 0.35 0.42

1aN 0.39 0.50 0.62 0.73 0.31 0.40 0.50 0.60 0.24 0.33 0.41 0.50
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Table 2
The distribution of prestress in the cable dome structure under changes in geometric parameters

Parameter
f L 0.08 0.09 0.10

h L 0.07 0.08 0.09 0.10 0.07 0.08 0.09 0.10 0.07 0.08 0.09 0.10

Case 3

1bN 0.13 0.16 0.20 0.24 0.10 0.13 0.16 0.20 0.08 0.11 0.13 0.16

1aT 0.17 0.22 0.26 0.31 0.14 0.18 0.22 0.26 0.11 0.14 0.18 0.22

1bT 0.21 0.26 0.32 0.37 0.17 0.21 0.26 0.31 0.13 0.17 0.22 0.26

1aV -0.03 -0.04 -0.04 -0.05 -0.03 -0.03 -0.04 -0.05 -0.02 -0.03 -0.04 -0.04

1bV -0.02 -0.02 -0.03 -0.03 -0.02 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02 -0.02

1B 0.07 0.08 0.08 0.09 0.06 0.07 0.08 0.09 0.06 0.06 0.07 0.08

1H 0.20 0.21 0.23 0.24 0.18 0.20 0.21 0.22 0.16 0.18 0.20 0.21

2aN 0.53 0.63 0.74 0.85 0.44 0.53 0.63 0.73 0.37 0.45 0.54 0.63

2bN 0.55 0.67 0.78 0.89 0.46 0.56 0.66 0.76 0.38 0.47 0.57 0.66

2aT 0.50 0.59 0.68 0.77 0.43 0.51 0.59 0.67 0.37 0.44 0.52 0.59

2bT 0.66 0.79 0.91 1.04 0.56 0.68 0.79 0.90 0.48 0.59 0.69 0.79

2aV -0.15 -0.17 -0.18 -0.20 -0.14 -0.16 -0.18 -0.19 -0.13 -0.15 -0.17 -0.19

2bV -0.10 -0.11 -0.12 -0.13 -0.10 -0.11 -0.12 -0.13 -0.09 -0.10 -0.11 -0.12

2B 0.39 0.39 0.40 0.41 0.39 0.40 0.41 0.42 0.40 0.40 0.41 0.42

X 0.85 0.94 1.04 1.14 0.77 0.86 0.94 1.03 0.71 0.78 0.86 0.94

Y -0.15 -0.22 -0.29 -0.36 -0.09 -0.16 -0.22 -0.28 -0.05 -0.11 -0.16 -0.22

4. Structural dynamic characteristics analysis

4.1. Finite element model

In the finite element software Ansys, a numerical model with a span of
120 m was established. As an example, a set of parameters was chosen, which
includes a span-to-rise ratio of 0.08, a thickness-to-span ratio of 0.10, and
Case 1 of lower chord node arrangement scheme. The cable dome consists of
two ring structures, with the inner ring structure having an opening diameter
of 40 m. There are a total of 17 categories of components in the model. In the
Ansys model, both cables and struts were simulated using the LINK180
element. Cables were defined as tension-only elements, while struts were
defined as compression-only elements [20]. According to the initial prestress
requirement, the cable cross-sections were prestressed to 20% of their
breaking strength, while and the strut cross sections followed the aspect ratio

design. For the cable, steel wire strands were used, and for the struts,
hot-pressed seamless steel pipes were used. The material properties of these
components can be found in Table 3. In the structural model, all nodes 3a in
the outer ring were fully constrained as boundary conditions. The standard
value for roof load is set to 0.5 kN/m2, and it is applied by converting the
distributed load into equivalent nodal loads using the SURF154 surface effect
element for calculation. The structural model is depicted in Fig. 4. The initial
prestress was applied through initial strains, and the levels of initial prestress
and component cross-sectional parameters can be found in Table 4. The
prestress mode was determined based on the values in Table 1. As shown in
Table 4, the internal force distribution after the self-balancing of the finite
element structural model matches the results of the prestressed state
distribution, demonstrating the correctness of the established finite element
model.

(a) 3D visualization of the numerical model (b) front view of the numerical model

Fig. 4 Numerical model of the 24 24H  cable dome

Table 3
Material properties

Components
Yield strength

(Mpa)
Poisson’s ratio

Modulus of elasticity
(Mpa)

Coefficient of linear expansion
Density

(kg/mm3)

cables 1860 0.3 1.95×105 1.36×10-5 7.85×10-6

struts 345 0.3 2.06×105 1.2×10-5 7.85×10-6
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Table 4
Structural prestressing modes and member section parameters

Categorization Components Prestressed Mode
Self-equilibrating Internal

Forces（kN）
Sectional Dimensions

Ridge cables

1N 0.52 5235 Φ147

1N a 0.60 6030 Φ161

1N b 0.18 1760 Φ92

N 2a 0.40 3962 Φ127

N 2b 0.54 5448 Φ147

1T a 0.23 2322 Φ80

1T b 0.27 2660 Φ107

2T a 0.49 4879 Φ147

2T b 0.60 5980 Φ155

Diagonal cables 1B 0.11 1108 Φ92

2B 0.47 4699 Φ147

Ring cables 1H 0.22 2240 Φ80

2H 1.00 10000 Φ154

Sturts

1V a -0.03 -294 Φ254×14

1V b -0.02 -231 Φ273×16

2V a -0.11 -1082 Φ426×16

2V b -0.08 -789 Φ427×15

4.2. Analysis of structural modal characteristics

The natural vibration characteristics are intrinsic mechanical properties of
a structure that are closely related to its mass and stiffness. These
characteristics not only reflect the stiffness of the structure but also directly
influence the response to dynamic loads. They serve as an important basis for
judging whether the distribution of structural stiffness and mass matches and
is reasonable. Modal analysis includes two aspects: natural frequencies and
mode shapes. The free vibration equation for each node are as follows:

[ ]{ } [ ]{ } [ ]{ } 0M u C u K u  && & (10)

In the aforementioned equation, [M] represents the structural mass matrix,
[C] represents the structural damping matrix, [K] represents the structural
stiffness matrix, {F(t)} denotes the time-varying load function, { }u is the
nodal displacement vector, { }u& is the nodal velocity vector, and { }u&& is the
nodal acceleration vector [15]. When conducting modal analysis, the influence
of damping is not typically neglected. Therefore, the equation can be rewritten
as follows:

[ ]{ } [ ]{ } 0M u K u && (11)

By performing a transformation on the equation, the generalized
characteristic equation for the structure can be obtained as follows:

0)( 2  ΦMK  (12)

In the equation, ω represents the structural natural frequencies, and Φ is
the mode shape vector. The characteristic determinant of equation is given by:

02  MK  (13)

Solving the equation yields the n natural frequencies of the system
denoted as n  ...21 and along with their corresponding mode
shapes. In this study, the Block Lanczos method was employed for modal
analysis, specifically considering the first 50 modes. The variation of natural
frequencies is shown in Fig. 5. It is noteworthy that the first 10 natural

frequencies of the structure exhibit proximity to each other, while the
higher-order natural frequencies are more widely spaced. The fundamental
frequency of the structure, measured at 1.0184 Hz, indicates that the structure
has a relatively high stiffness. Due to the axial and central symmetry of the
structure, the frequencies will appear in pairs with equal values.

From the data in Table 5, it can be observed that each pair of
equal-frequency modes is essentially the same, except they are rotated 90 °
around the structure's central axis. As shown in Fig. 6, the modes for each
order exhibit distinct characteristics. The 1st and 2nd modes are primarily
dominated by vertical deformation in the inner ring, with horizontal
displacement smaller than vertical displacement. The 3rd mode involves
horizontal vibration, primarily characterized by circumferential deformation in
the inner ring. In the 4th and 5th modes, vertical deformation dominates, with
the point of maximum displacement shifting from the inner ring to the outer
ring. Additionally, these modes exhibit significant horizontal displacement.
The 6th and 7th modes are characterized by circumferential deformation in the
outer ring, accompanied by vertical displacement. The 8th and 9th modes
primarily exhibit vertical vibrations, with vertical deformation in the outer ring
as the dominant feature. These modes also exhibit significant horizontal
displacement. The 10th mode involves coupled deformation in both the
circumferential and vertical directions, with slightly larger vertical
displacement observed in the inner ring compared to horizontal displacement
in the outer ring. Based on the analysis provided, it can be concluded that, for
this cable dome configuration, the inner ring has lower stiffness compared to
the outer ring, and the structural stiffness in the vertical direction is weaker
than that in the circumferential direction.

Fig. 5 The first 50 natural frequencies of the structure vs order numbers
Table 5
Material properties

Order 1、2 3 4、5 6、7 8、9 10

Frequency（Hz） 1.0184 1.0455 1.0991 1.1863 1.2417 1.2828
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(a) 1st order (b) 2nd order (c) 3rd order (d) 4th order (e) 5th order

(f) 6th order (g) 7th order (h) 8th order (i) 9th order (j) 10th order

Fig. 6 The first 10 vibration modes of the structure

4.3. Parametric analysis of structural modal characteristics

The structural modal characteristics are closely related to factors such as
the geometric configuration of the structure and the level of prestress.
Therefore, it is essential to conduct a parametric analysis of the structural
modal characteristics. To further investigate the influence of structural
parameters on modal characteristics, several key structural parameters are
selected, including the initial prestress level, span-to-rise ratio,
thickness-to-span ratio and lower chord node arrangement scheme. Through
parametric analysis, the impact of each parameter on the structural modal
characteristics is explored.

4.3.1. Initial prestress level
To investigate the influence of the initial prestress level on the structural

modal characteristics while keeping other parameters constant, the prestress
levels are varied to be 0.5, 1.0, 1.5, and 2.0 times. Modal analysis is performed
on the structure, and the resulting first 50 natural frequencies are shown in Fig.
6. From the figure, it is observed that, under different initial prestress levels,
the trends in the first 50 natural frequencies of the structure remain generally
consistent. The low-frequency modes are densely distributed, while the
high-frequency modes are sparser and exhibit multiple jump points. As the
initial prestress level increases, the natural frequencies of the structure also
increase. The increase in low-frequency modes is more significant compared
to the increase in high-frequency modes. Notably, when the prestress level
changes from 0.5 times to 1.0 times, there is a significant increase in
frequencies. However, as the prestress level changes from 1.0 times to 2.0
times, the rate of increase gradually decreases. This suggests that as the initial
prestress level increases, the structural stiffness also increases. However, the
rate of stiffness increase gradually decreases when the prestress level exceeds
1.0 times.

Fig. 6 The first 50 natural frequencies under different initial prestress level vs order
numbers

4.3.2. Span-to-rise ratio
To explore the impact of the span-to-rise ratio on the structural natural

frequencies while keeping other parameters constant, the structural model was
analyzed with span-to-rise ratios of 0.07, 0.08, 0.09, and 0.10. The resulting
first 50 natural frequencies of the structure are shown in Fig. 7 below. From
the graph, it is observed that, for all four span-to-rise ratios, the overall trend
of natural frequency variations is similar. The lower-order frequencies are
denser, while the higher-order frequencies are sparser and exhibit multiple
jump points. As the span-to-rise ratio increases, the natural frequencies
decrease initially until around the 45th mode, after which they exhibit the

opposite trend, increasing with a higher span-to-rise ratio. The span-to-rise
ratio has a significant impact on the fundamental mode and lower-order
frequencies, leading to changes in structural stiffness as the span-to-rise ratio
increases.

Fig. 7 The first 50 natural frequencies under different span-to-rise ratios vs order numbers

4.3.3. Thickness-to-span ratio
To investigate the impact of the thickness-to-span ratio on the structural

natural frequencies while keeping other parameters constant, the structural
model was analyzed with thickness-to-span ratios of 0.07, 0.08, 0.09 and 0.10.
The resulting first 50 natural frequencies of the structure are shown in Fig. 8
below. From the figure, it is observed that, for all four thickness-to-span ratios,
the overall trend of natural frequency variations is quite similar. The
lower-order frequencies are denser, while the higher-order frequencies are
sparser and exhibit multiple jump points. As the thickness-to-span ratio
increases, the natural frequencies also increase. After the 45th mode, the
natural frequencies of the three models with a thickness-to-span ratio greater
than 0.08 become relatively close, indicating that the structural stiffness
reaches its peak. An increase in the structural thickness-to-span ratio results in
a corresponding increase in structural stiffness.

Fig. 8 The first 50 natural frequencies under different thickness-to-span ratios vs order
numbers

4.4. Time history analysis of structural seismic

4.4.1. Selection and input of seismic waves
To understand the impact of seismic actions on this structure, this study



Hui Lv et al. 89

selected the El-Centro wave from the 1940 El Centro, California earthquake,
which had a magnitude of 7.1, as the seismic load input. The numerical model
employed in this section is the same as that in Section 4.1, with a damping
ratio set to 0.02 [21]. The dynamic response of the structure under seismic
loading was investigated. According to the guidelines outlined in the "Seismic
Design Code for Buildings" Section 5.1.4, the analysis was conducted for
high-intensity earthquake conditions in Seismic Design Category 8, with a
maximum ground acceleration of 0.7 m/s ² [22]. The El-Centro earthquake
waveforms in three directions were adjusted to have peak accelerations of 0.7
m/s² in the X direction, 0.7 m/s² in the Y direction and -0.7 m/s² in the Z
direction to meet the specific requirements. The acceleration time-history
curves of the El-Centro earthquake waveforms for the first 30 seconds after
adjustment are shown in Fig. 9.

The seismic response analysis of the structure was conducted using the
dynamic time-history analysis method [14]. The structure's dynamic response
was computed under one-dimensional, two-dimensional and three-dimensional
seismic load inputs. The earthquake arrays used in the analysis are listed in
Table 6. The seismic excitation factors were set to 1.0 and 0.65 for the
two-dimensional seismic wave, and 1.0, 0.85, and 0.65 for the
three-dimensional seismic wave.

Fig. 9 The acceleration time-history curve for the first 30 s after amplitude adjustment of
El-Centro seismic wave

Table 6
The excitation factors of each earthquake array

Arrays X(EW) Y(NS) Z(U)

1D seismic wave 1.0 — —

2D seismic wave 1.0 — 0.65

3D seismic wave 1.0 0.85 0.65

4.4.2. Internal force analysis
The calculation results of dynamic internal force coefficients for the

structure under three different seismic arrays are shown in Table 7. Dynamic
internal force coefficient refers to the ratio of the maximum internal force of a
component during the time-varying internal force process to its initial internal
force. Analyzing the data from Table 7, it can be concluded that the overall
dynamic effect on component internal forces in the structure under seismic
actions is not significant, with a maximum dynamic internal force coefficient
of only 1.0031. In general, the internal forces of inner ring components exhibit
a greater dynamic response to seismic actions compared to outer ring
components. The dynamic response of internal forces induced by
three-dimensional and two-dimensional seismic actions is significantly larger
than that induced by one-dimensional seismic actions. Furthermore, the
structural dynamic response to three-directional seismic actions is slightly
greater than that to two-dimensional seismic actions.

Fig. 10 shows the time-history curves of the components that exhibit the
most pronounced dynamic response under seismic actions among various
types of components. During the analysis process, no tension cables
exhibited any slackening phenomenon, and the distribution of dynamic
responses coincided with the acceleration time-history curves of the seismic
waves.

Table 7
The dynamic internal force coefficients of each component under different
earthquake arrays

Components
Dynamic internal force coefficient of each component

1D 2D 3D

Ridge cables

N1 1.00072 1.00260 1.00257

N1a 1.00285 1.00256 1.00256

N1b 1.00244 1.00291 1.00284

N2a 1.00230 1.00207 1.00207

N2b 1.00257 1.00229 1.00257

T1a 1.00235 1.00252 1.00254

T1b 1.00281 1.00277 1.00278

T2a 1.00243 1.00220 1.00237

T2b 1.00289 1.00263 1.00284

Diagonal cables
B1 1.00215 1.00251 1.00295

B2 1.00217 1.00241 1.00259

Ring cables
H1 1.00159 1.00191 1.00213

H2 1.00123 1.00187 1.00200

Struts

V1a 1.00205 1.00218 1.00290

V1b 1.00297 1.00302 1.00310

V2a 1.00202 1.00214 1.00249

V2b 1.00217 1.00295 1.00227

(a) The time-history curve of N1b (b) The time-history curve of B1
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(c) The time-history curve of H1 (d) The time-history curve of V1b

Fig. 10 The time-history curve of internal forces in components under seismic loading

4.4.3. Deformation analysis
The seismic wave input direction and the substructure numbering for the

cable dome structure are shown in Fig. 11. Along the X-axis, nodes are
parallel to the one-dimensional horizontal seismic load direction, while along
the Y-axis, nodes are perpendicular to the one-dimensional horizontal seismic
load direction. Therefore, the maximum horizontal displacement in the
X-direction occurs at nodes along the X-axis. Table 8 below presents the
calculated dynamic displacement responses of various nodes in the cable dome
structure under multi-dimensional seismic loads. Considering the horizontal
symmetry of the structure in terms of height, the analysis of horizontal
displacement primarily focuses on the X-direction.

Regarding the horizontal displacement of the structure, an analysis of the
calculation results in Table 8 reveals that, due to the additional constant load
acting only on the upper chord nodes, the X-direction horizontal displacement
response at each upper chord node is greater under two- and three-dimensional
seismic loads compared to one-dimensional seismic loads. Under two- and
three- dimensional seismic loads, the dynamic responses are similar. For the
lower chord nodes, under all three seismic arrays, the displacement dynamic
responses are relatively close. The four braces converge at the lower chord
node, providing sufficient lateral stiffness for the upper chord honeycomb
cable grid. Therefore, the X-direction horizontal displacement dynamic
response coefficients for all upper chord nodes are less than 1.10. The
maximum displacement response coefficient is observed at inner ring lower
chord node 1, with a coefficient of 1.54, which is significantly greater than the
outer ring's coefficient of 1.03. This discrepancy is attributed to the lower
pre-tension level of the inner ring cables, resulting in significantly lower radial
stiffness for the inner ring. The time-history curves of horizontal displacement
for the lower chord nodes are shown in Fig. 12. Fig. 11 Earthquake wave direction and substructure numbering

Table 8
The dynamic internal force coefficients of each component under different earthquake arrays

Node number 1a 1b 2a 2b 1’ 2’

Direction 1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D

Ux

Uxmax 6.50 6.53 6.52 7.82 7.86 8.00 7.53 7.57 7.56 7.17 7.20 7.21 4.83 4.85 4.86 12.55 12.57 12.58

Ux0 6.06 7.45 7.01 6.96 3.15 12.27

Uxmax/Ux0 1.07 1.08 1.08 1.05 1.06 1.07 1.07 1.08 1.08 1.03 1.03 1.04 1.53 1.54 1.54 1.02 1.02 1.03

Uy

Uymax 6.39 6.40 6.70 7.90 8.14 8.48 7.40 7.48 7.93 7.00 7.05 7.14 3.16 3.16 4.3 12.27 12.27 12.54

Uy0 6.06 7.45 7.01 6.96 3.15 12.23

Uymax/Uy0 1.05 1.06 1.11 1.06 1.09 1.14 1.06 1.07 1.13 1.01 1.01 1.03 1.00 1.00 1.37 1.00 1.00 1.03

Uz

Uzmax 91.90 92.10 92.37 81.65 81.77 82.94 57.03 57.18 57.56 39.61 39.64 40.15 91.05 91.63 92.12 56.32 56.36 56.71

Uz0 -90.68 -81.19 -56.23 -39.23 -90.40 -55.43

Uzmax/Uz0 1.01 1.02 1.03 1.01 1.01 1.02 1.01 1.02 1.03 1.01 1.02 1.03 1.01 1.02 1.03 1.01 1.02 1.03

Note: U represents displacement, and subscripts with letters represent the direction of displacement. U0 represents the initial load state displacement. The
displacement dynamic response coefficient is the ratio of the maximum displacement in a certain direction to the initial load state displacement.
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(a) The horizontal displacement time-history curve for lower chord node 1’-7 (b) The horizontal displacement time-history curve for lower chord node 2’-7

Fig. 12 The horizontal displacement time-history curve of lower chord nodes

Regarding the horizontal displacement of the structure, in seismic arrays 2
and 3, seismic waves were introduced in the Z-direction. Consequently, under
two-dimensional and three-dimensional seismic loads, the vertical
displacement dynamic response at various structural nodes is greater than that
under one-dimensional loads. However, under one-dimensional and
two-dimensional seismic loads, the dynamic response is similar. When
comparing the results for upper chord nodes and lower chord nodes, it is
evident that node loads have a relatively small impact on the Z-direction
displacement of the nodes. When comparing the displacement values between
inner and outer ring nodes, it can be observed that Z-direction seismic waves
have a greater impact on the inner ring of the structure than the outer ring,

indicating that the inner ring of the structure has lower stiffness than the outer
ring. The time-history curves of vertical displacement for inner ring nodes are
shown in Fig. 13, and the displacement fluctuations align with the acceleration
time-history curves.

Overall, the dynamic response of the structure under seismic loads is
relatively small. However, each type of components and nodes exhibits
distinct dynamic responses to different seismic actions. The analysis results
reflect the structural characteristics that are essential to consider when
conducting dynamic load calculations and structural design for this cable
dome structure. These findings are of significant importance.

(a) The vertical displacement time-history curve for lower chord node 1a-1 The vertical displacement time-history curve for lower chord node 1b-1

Fig. 13 The vertical displacement time-history curve of inner ring nodes

5. Conclusions

This study focuses on the new form 24 24H Ⅲ cable dome structure. Based
on the node equilibrium theory, it derives general calculation formulas for the
prestress state of the structure and the internal forces in the bars. Additionally,
the study analyzes the distribution of prestress within the structure and how it
changes with variations in structural parameters. Using a finite element
numerical model with a span of 120 meters as an example, the study explores
the impact of structural parameters on the structural vibration characteristics
through modal analysis. Based on the modal analysis results, the study
calculates the dynamic response of the components and critical nodes’
displacements under multi-dimensional seismic loads using nonlinear dynamic
analysis methods. These research findings provide valuable insights into the
mechanical performance of the structure. The main conclusions of this paper
are as follows:

(1) From the perspective of structural topology, the cable grid of the
24 24H Ⅲ cable dome structure is uniformly distributed, making the structural
design simple and efficient while minimizing the use of cables and struts. By
tensioning the outer ring cables simultaneously, the structure can be
pre-positioned, reducing the steps involved in tensioning during construction.
This design approach can accommodate diverse architectural requirements

while remaining cost-effective.
(2) The results of the prestressed state calculation example indicate that,

the internal forces in the prestressed cables and struts of the structure are
reasonably distributed, with the outer ring of the structure primarily governing
the overall stiffness. Meanwhile, variations in the aspect ratio, height-to-span
ratio and the arrangement of lower chord nodes have distinct effects on the
distribution of internal forces in the cables and struts. Increasing the
thickness-to-span ratio while moderately reducing the span-to-rise ratio can
enhance the structural stiffness. However, this change would also lead to
increased support reactions.

(3) The modal analysis results show that the fundamental frequency of the
structure is 1.0184, indicating good stiffness. Due to the structural height
symmetry, there is a distinct pattern in the resonant modes of the structure.
These modes predominantly involve vertical deformations, suggesting that the
vertical stiffness of the structure is comparatively weaker than the radial
stiffness. Additionally, structural parameters have a noticeable impact on the
resonant characteristics. Increasing the initial prestress level, reducing the
span-to-rise ratio or increasing the thickness-to-span ratio can effectively
enhance the structural stiffness.

(4) From the results of the seismic response calculations, the dynamic
responses of various structural components and nodes do not significantly
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differ from those under static loads. This indicates that the 24 24H Ⅲ cable dome
structure, as a flexible system, demonstrates excellent seismic performance
when reasonable structural parameters are selected under specific site
conditions.
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