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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

This paper numerically studies the bifurcation buckling load of steel angle members affected by random corrosion pits. Six 

million Monte Carlo simulations are conducted, in which the effects of member length, section type, area loss ratio, and 

corrosion depth on the bifurcation buckling load of steel angles are considered. The key statistical characteristics of the 

reduction factors of buckling load for steel angles are analyzed. A probability-based relationship between the reduction 

factor of buckling load and the area loss ratio of steel angles is also proposed for the practical design. It is found that 

corrosion can potentially change the buckling mode of steel angle members from flexural buckling to torsional buckling. 

When the member length is small, the bifurcation buckling load of the steel angle is significantly affected by the corrosion 

depth. However, with the increase in member length, the effect of corrosion depth tends to decrease. The reduction factors 

of the buckling load of steel angles follow a normal distribution. A larger area loss ratio will result in a larger standard 

deviation of the reduction factors. For steel angles with the same area loss ratio, the mean values of the reduction factors of 

different section types are very close. 
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1.  Introduction 

 

Steel structures will inevitably be corroded due to exposure to an aggressive 

environment. Corrosion weakens the strength and ductility of steel material and, 

meanwhile, reduces the sectional area of steel components, which results in the 

deterioration of steel structures. The deterioration process of steel structures is 

highly random and unpredictable, which reduces the safety and reliability of the 

structure by a great extent [1].  

Currently, a considerable amount of literature can be found on the corrosion 

effects of steel structures. The research objects of these studies mainly include: 

steel material [2-5], plate [6-9], rebar [10-14], beam [15-17], column [18-24], 

joint [25-28], pipeline [29-32], and structure [33-37]. Zhao et al. [2] numerically 

studied the mechanical properties of Q345 steel with random corrosion pits. The 

reduction of the nominal ultimate strength of corroded Q345 steel was affected 

by both the mass loss ratio and corrosion depth. Wang et al. [9] studied the 

compression behavior of corroded steel plates, considering different pit shapes, 

distributions, and depths. It was found that corrosion pits will not only reduce 

the ultimate strength of steel plate but also change its failure mode. Zhang et al. 

[11] studied the corrosion evolution process in rebar and found that the corrosion 

depth followed the Poisson distribution, and the longitudinal nonuniformity 

factor (the ratio of average section area to the minimum one) followed the 

Gumbel distribution. Chen et al. [16] proposed an efficient algorithm to compute 

the elastic buckling load/moment of steel members with random corrosion pits. 

The results show that corrosion reduces the axial-torsional buckling load of the 

member with greater extent than the lateral-torsional buckling moment and 

flexural buckling load. Hisazumi and Kanno [24] investigated the compression 

behavior of corroded angle-section and channel-section steel members. The 

ultimate capacity of the member can be better described by the minimum section 

area of the member. Wang et al. [27] studied the cyclic performance of welded 

beam-to-column joints in a salt spray environment with 5% mass fraction of 

NaCl solution. When the corrosion time reached 18 months, the yield moment, 

ultimate moment, ultimate rotation, and total energy dissipation were decreased 

by 28.2%, 32.1%, 49.4%, and 70.8%, respectively. In the study by Huang et al. 

[37], the fatigue reliability of a ship welded structure with random corrosion was 

evaluated. Altogether 151,527,600 random corrosion pits were generated in the 

numerical model. The relationship between the fatigue damage of the structure 

and corrosion deterioration was further quantified.  

From the above studies, a considerable number of conclusions have been 

reached with great practical value. However, there are still some shortcomings 

existing in current studies. First, the section types of these members are mainly 

I-shaped [15-18] and circular-shaped [19, 20, 30, 32]. Relevant studies on angle 

members are scarce. Considering that the angle section is not symmetric, the 

mechanism of corrosion effect on the buckling load, as well as the failure mode 

of the corroded member, should be more complicated compared with the 

members with symmetric sections [24]. Therefore, a systematic understanding 

of the buckling load of corroded steel angle members is necessary. Second, to 

sufficiently capture the random nature of corrosion pits, using commercial finite 

element analysis software is cumbersome and time-consuming to ensure a 

sufficient number of Monte Carlo simulations. Therefore, an efficient algorithm 

is required to study the effect of random corrosion pits on steel members.  

This paper numerically studies the bifurcation buckling load of steel angle 

members with random corrosion pits. Six million Monte Carlo simulations are 

conducted, in which the effects of member length, section type, area loss ratio, 

and corrosion depth on the bifurcation buckling load of steel angles are studied. 

The key statistical characteristics of the reduction factors of buckling load for 

steel angles are analyzed. A probability-based relationship between the reduction 

factor of buckling load and the area loss ratio of steel angles is also proposed. 

This paper is divided into seven sections. After this Introduction, analytical 

calculations of the buckling loads for steel angle members are introduced in 

Section 2. The simulation of random corrosion pits is illustrated in Section 3. A 

flowchart to compute the buckling load of steel angles with random corrosion 

pits is given in Section 4. Verification of the proposed algorithm is conducted in 

Section 5. Parametric studies of the buckling loads of corroded steel angle 

members are conducted in Section 6. The main findings and conclusions from 

this paper are summarized in Section 7.  
 

2.  Bifurcation buckling load 

 

For steel angle members in compression, typical buckling modes are shown 

in Fig. 1 [38, 39]. Note that the local plate buckling mode is not considered in 

this study. The section has the smallest and largest bending rigidity about V- and 

W-axis, respectively. 

The bifurcation buckling load of the compressed steel members with simply 

supported boundary conditions can be obtained by solving the following 

equation [40, 41]:  
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wherein Pcr is the bifurcation buckling load of the steel member in compression. 

Pv and Pw are the flexural buckling load of the member about the V- and W-axis, 

respectively. Pr is the torsional buckling load of the member. Pv, Pw and Pr are 

given by [41]: 
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wherein E and G are the Young’s modulus and shear modulus of steel, 

respectively. A0 is the section area. L is the member length. J is the section 

torsional rigidity. Iv and Iw are the section moment of inertia about V- and W- 

axis, respectively. Iω is the section warping constant. ws and vs are the w- and v-

coordinate of section shear center, respectively. Detailed calculations of these 

parameters can be found in Ref. [41].

 

 

Fig. 1 Typical buckling modes of steel angle member in compression 

 
3.  Simulation of corrosion pits 

 

Fig. 2 shows the simulation of random corrosion pits on the section. H and 

W represent the length of the two legs and t is the thickness of the intact section. 

The section is initially meshed into several line segments, with mesh size of ls=1 

mm. td is the corrosion depth, and the corrosion damage is considered by 

reducing the segment thickness by the value of td. For simplicity, the thickness 

of each damaged segment is assumed to be identical. 

 

 

Fig. 2 Modeling of random corrosion pits 

 

The total number of damaged segments nd can be computed by: 
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wherein A0 and ηA are the section area and section area loss ratio, respectively. 

N0 is the total segment number (including both the intact and damaged segments).  

In Equation (5), once the corrosion depth and section area loss ratio is 

known, the total number of damaged segments at the section can be determined. 

In this study, the considered values for the corrosion depth and section area loss 

ratio are 0.2-0.9 times the section thickness and 10%-50%, respectively. The 

details are summarized in Table 1. After the total number of damaged segments 

is determined, the corrosion pits are randomly generated at different locations 

on the section by Monte Carlo simulation. Then the section parameters in 

Equations. (2)-(4) can be computed and the bifurcation buckling load of the 

member Pcr in Equation (1) can be solved.  

 
Table 1  

Considered values of corrosion depth and section area loss ratio 

Area loss ratio ηA Corrosion depth td 

10% 0.2t, 0.3t, 0.4t, 0.5t, 0.6t, 0.7t, 0.8t, 0.9t 

20% 0.3t, 0.4t, 0.5t, 0.6t, 0.7t, 0.8t, 0.9t 

30% 0.4t, 0.5t, 0.6t, 0.7t, 0.8t, 0.9t 

40% 0.5t, 0.6t, 0.7t, 0.8t, 0.9t 

50% 0.6t, 0.7t, 0.8t, 0.9t 

 

Z

Y

O (centroid)

(a) Flexural buckling about major axis

F

(b) Flexural buckling about minor axis

(c) Torsional buckling (d) Torsional-flexural buckling
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4.  Flowchart 

 

The flowchart for calculating the bifurcation buckling load of a corroded 

steel angle member is illustrated in Fig. 3. The section area loss ratio and 

corrosion depth are firstly assigned. Then the total number of corrosion pits is 

calculated, and the corrosion pits are generated randomly at the section. 

Subsequently, section key parameters J, Iv, Iw, ws, vs, and Iω in Equations (2)-(4) 

are calculated, and the bifurcation buckling load of the member can be 

determined. The sample size of the Monte Carlo simulation is set to be 5000 for 

a given total number of corrosion pits. The reasonability of this value will be 

verified in Section 6. All the values of the section area loss ratio and corrosion 

depth are traversed by the algorithm. The bifurcation buckling loads of the 

members in each Monte Carlo simulation are exported. 

 

 

Fig. 3 Flowchart for determining the buckling loads of steel angle member with random corrosion pits 

 

5.  Verification 

 

The software MASTAN2 [42] is used to verify the reliability and accuracy 

of the proposed algorithm. MASTAN2 is an educational structural analysis 

software. The bifurcation buckling loads from MASTAN2 and proposed 

algorithm for simply supported angle member are compared. Ten values of 

member length are considered, from 0.5 m to 5 m, with an interval of 0.5 m. 

Four section types are studied, as shown in Fig. 4. Section A is an intact section. 

Sections B, C and D are corroded sections, with area loss ratio of 10%. The 

comparisons of the buckling load from MASTAN2 and proposed algorithm are 

shown in Fig. 5. The error is calculated by: 
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wherein Pcr-proposed and Pcr-MASTAN2 are the bifurcation buckling load from proposed 

algorithm and MASTAN2, respectively.   

It can be seen that satisfactory agreements have been achieved between the 

results from the proposed algorithm and MASTAN2. The errors of the proposed 

algorithm are generally within 2%. The largest error of 4% occurs for section D 

when the member length is 1 m. By comparing Fig. 5(b), (c), and (d), it is also 

found that the buckling loads of the member with sections B, C, and D are very 

close. For example, for the member length of 2.5 m, 3m, and 3.5 m, the buckling 

loads of the member with sections B, C, and D are about 200 kN, 150 kN, and 

100 kN, respectively. 

 

Fig. 4 Sections selected for verification of the algorithm 
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(a) Section A (b) Section B 

  
(c) Section C (d) Section D 

Fig. 5 Validation of the proposed algorithm 

 

6.  Bifurcation buckling load assessment 

 

A total of six million Monte Carlo simulations are conducted to study the 

bifurcation buckling load of corroded steel angles. The considered variables 

include the member length, section dimension, area loss ratio, and corrosion 

depth. The values of section area loss ratio and corrosion depth are presented in 

Table 1. Five sections are selected from the code of Structural Steel Equal and 

Unequal Leg Angles [43], three of which are equal leg angles, and two are 

unequal leg angles. For each section, eight values of member length are 

considered. The details are given in Table 2. A convergence study is firstly 

conducted to determine a reasonable sample size of Monte Carlo simulation in 

each corrosion scenario, considering both the efficiency and accuracy of the 

algorithm. After computation, the buckling curves of corroded steel angle 

members are exhibited. The effects of the area loss ratio and corrosion depth on 

the buckling load of steel angle are analyzed. Moreover, the relationship between 

the reduction factor and the area loss ratio of the corroded steel angle is studied. 

 

Table 2  

Details of section dimension and member length 

Section (mm) 
Iy 

(cm4) 

Iz 

(cm4) 

iy 

(cm) 

iz 

(cm) 
Member length (m) 

L100×100×12 207 207 3.02 3.02 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 

L150×150×18 1050 1050 4.54 4.54 
0.75, 1.5, 2.25, 3, 3.75, 4.5, 

5.25, 6 

L200×200×24 3330 3330 6.06 6.06 1, 2, 3, 4, 5, 6, 7, 8 

L150×100×12 233 651 2.85 4.76 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 

L200×100×12 247 1440 2.67 6.43 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 
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(c) Pr (d) Pcr 

Fig. 6 Convergence study of Monte Carlo simulation 

 

6.1. Sample size of Monte Carlo simulation 
 

The steel angle member with the section of L100×100×12 and length of 4 

m is selected to analyze the convergence of the Monte Carlo simulation. The 

section area loss ratio and corrosion depth are 50% and 9.6 mm (80% of the 

section thickness), respectively. The total number of corrosion pits in the section 

can be calculated by Equation (5), which is 125. Eight values of sample size are 

studied in the convergence analysis: 10, 100, 1000, 2000, 3000, 4000, 5000, and 

10000. The results of buckling loads Pw, Pv, Pr, and Pcr in the convergence study 

are shown in Fig. 6. In these figures, the values of maximum, minimum, mean, 

and standard deviation of the buckling load for each sample size are presented. 

It can be seen that the sample size has a limited effect on the mean value of the 

buckling load of the member, while it has a relatively significant effect on the 

minimum, maximum, and standard deviation value of the buckling load. With 

the increase in the sample size, the minimum value of the buckling load 

decreases. The maximum and standard deviation values of the buckling load 

increase with the increase in the sample size. However, all the values tend to be 

stable when the sample size of the Monte Carlo simulation reaches 5000. 

Therefore, considering both the computational accuracy and cost, in the 

following study, the sample size of Monte Carlo simulation for a given area loss 

ratio and corrosion depth is designated to be 5000. 

 

6.2. Buckling curve 

 

Fig. 7 shows the lower bound of buckling curves of steel angle 

L200×100×12, in which Fig. 7(a) is for intact steel angle and Fig. 7(b)-(d) are 

for corroded steel angles with an area loss ratio of 50%. The legend name 

“PcrLowerB” refers to the lower bound of bifurcation buckling load Pcr of corroded 

steel angles. The corrosion depth for Fig. 7(b), Fig. 7(c) and Fig. 7(d) are 60%, 

70%, and 80% of the section thickness, respectively. It can be seen from Fig. 7 

that the bifurcation buckling load of the steel angle is always upper-bounded by 

the torsional buckling load Pr and flexural buckling load Pv. In Fig. 7(a), for the 

member length of 2 m, the flexural buckling load Pv is smaller than the torsional 

buckling load Pr, indicating that the buckling mode of the member is governed 

by the flexural buckling. In Fig. 7(b), however, for the member length of 2 m, 

the flexural buckling load Pv is greater than the torsional buckling load Pr, which 

suggests that the buckling mode of steel angle member will possibly be changed 

from flexural buckling to torsional buckling due to corrosion. Moreover, by 

comparing Fig. 7(b)-(d), it can be concluded that when the member length is 

small, even for a same area loss ratio, the bifurcation buckling load Pcr of steel 

angle can be significantly different due to the difference of corrosion depth. For 

example, in Fig. 7(b), for the member length of 0.5 m, the buckling load Pcr of 

steel angle with a corrosion depth of 60% is 320 kN, while it increases to 400 

kN and 470 kN when the corrosion depth increases to 70% and 80%, respectively. 

However, with the increase in member length, the effect of corrosion depth on 

Pcr tends to decrease. For the member length of 2 m, the values of Pcr are all 

about 200 kN in Fig. 7(b)-(d). This is because when the member length increases, 

the bifurcation buckling load Pcr of the steel angle will be governed by the 

flexural buckling load, which is not significantly affected by the corrosion depth 

[16].  

The lower bound of buckling curves of steel angle L150×100×12 is shown 

in Fig. 8. It can be observed from Fig. 7(b) and Fig. 8(b) that when the member 

length is relatively small, the bifurcation buckling load of steel angle 

L150×100×12 is greater than that of L200×100×12. This is because the section 

L200×100×12 is more asymmetric compared with section L150×100×12 and a 

more asymmetric section will result in a lower torsional buckling load of the 

steel angle. However, when the member length increases to more than 3 m, the 

bifurcation buckling load of the steel angle L150×100×12 becomes smaller than 

that of L200×100×12. Similar to Fig. 7, a change of the buckling mode of steel 

angle due to corrosion can also be observed in Fig. 8, e.g., from Fig. 8(b) and 

Fig. 8(d), when the member length is 1.5 m, the buckling mode of the steel angle 

is governed by torsional buckling mode and flexural buckling mode, respectively.  

To further quantify the effects of corrosion on the buckling loads of the steel 

angles, a reduction factor is defined, which is calculated by the ratio of the 

buckling load of the corroded steel angles to that of the intact steel angles. The 

reduction factors of the buckling loads of steel angle L200×100×12 and 

L150×100×12 with a length of 4 m are shown in Fig. 9(a) and Fig. 9(b), 

respectively. It is found that corrosion has the most detrimental effect on the 

torsional buckling load Pr of steel angles. When the area loss ratio reaches 50%, 

the buckling load Pcr and Pr of the steel angles decrease by more than 60% and 

80%, respectively. 

 

  

(a) Area loss ratio =0% and corrosion depth =0% (b) Area loss ratio =50% and corrosion depth =60% 
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(c) Area loss ratio =50% and corrosion depth =70% (d) Area loss ratio =50% and corrosion depth =80% 

Fig. 7 Lower bound of buckling curve of steel angle L200×100×12  

  

(a) Area loss ratio =0% and corrosion depth =0% (b) Area loss ratio =50% and corrosion depth =60% 

  

(c) Area loss ratio =50% and corrosion depth =70% (d) Area loss ratio =50% and corrosion depth =80% 

Fig. 8 Lower bound of buckling curve of steel angle L150×100×12  

  

(a) L200×100×12 (b) L150×100×12 

Fig. 9 Reduction factors of different buckling loads for member with length of 4 m 
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6.3. Effect of area loss ratio and corrosion depth 

 

The effects of the area loss ratio on the bifurcation buckling load Pcr of steel 

angle L100×100×12 and L200×200×24 are shown in Fig. 10(a) and (b), 

respectively. The legend names “ALR” and “CD” refer to the section area loss 

ratio and corrosion depth, respectively. It has been found that a larger area loss 

ratio will result in a greater variation of the reduction factor. For instance, the 

reduction factor of the steel angle L100×100×12 ranges from 0.2-0.45 for the 

area loss ratio of 50%. However, the reduction factor ranges from 0.63 to 0.72 

for the area loss ratio of 20%. When the member length increases, the reduction 

factor of buckling load Pcr tends to be a constant value. For the steel angle 

L100×100×12, when the member length is 4 m and corrosion depth is 60%, the 

reduction factor of the buckling load Pcr is about 0.72, 0.63, 0.52, and 0.46, 

corresponding to the area loss ratio of 20%, 30%, 40%, and 50%, respectively. 

The values of reduction factors for steel angle L200×200×24 in Fig. 10(b) are 

very close to those in Fig. 10(a). 

The effects of corrosion depth on the buckling load Pcr of steel angle 

L100×100×12 and L200×200×24 are shown in Fig. 11(a) and (b), respectively. 

It is found that a smaller corrosion depth ratio will result in a greater variation 

of the reduction factor. For instance, the reduction factor of steel angle 

L100×100×12 ranges from 0.2-0.45 for the corrosion depth of 50%. However, 

the reduction factor ranges from 0.35-0.4 for the corrosion depth of 90%. It is 

interesting to note that a smaller corrosion depth will result in a smaller reduction 

factor for the member length of 0.5 m, but a larger reduction factor for the 

member length of 4 m. This phenomenon can also be discovered in Fig. 7 and 

Fig. 8. For the steel angle L100×100×12, when the member length is 4 m, and 

the area loss ratio is 50%, the reduction factor of the buckling load Pcr is about 

0.45, 0.43, 0.42, and 0.4, corresponding to the corrosion depth of 60%, 70%, 

80%, and 90%, respectively. The values of reduction factors for steel angle 

L200×200×24 in Fig. 11 (b) are very close to those in Fig. 11 (a) 

  

(a) L100×100×12 (b) L200×200×24 

Fig. 10 Effect of area loss ratio on lower bound of buckling load Pcr 
 

  

(a) L100×100×12 (b) L200×200×24 

Fig. 11 Effect of corrosion depth on lower bound of buckling load Pcr 

 

6.4. Discussion on the reduction factor 

 

In Sections 6.2 and 6.3, only the lower bounds of the reduction factor of 

buckling load for steel angles are analyzed. To further study the corrosion effects 

on the buckling loads of steel angles, some key statistical characteristics, such 

as the mean value, standard deviation, and distribution of the reduction factors 

of buckling load Pcr from each Monte Carlo simulation are calculated. A 

probabilistic relationship between the reduction factor and area loss ratio is also 

established. The mean value and standard deviation of the reduction factor are 

shown in Table 3. Note that the total number of Monte Carlo simulations for a 

certain area loss ratio has considered the variations of corrosion depth. For 

example, for the area loss ratio of 10%, the possible corrosion depth can be 0.2t, 

0.3t, 0.4t, 0.5t, 0.6t, 0.7t, 0.8t, and 0.9t (shown in Table 1). For each corrosion 

depth, the sample size of the Monte Carlo simulation is 5,000. Therefore, the 

total number of the Monte Carlo simulations for the area loss ratio of 10% is 

40,000.  

It can be seen that the mean values of the reduction factors of steel angles 

are about 0.9, 0.8, 0.7, 0.6, and 0.5 for the area loss ratio of 0.1, 0.2, 0.3, 0.4, and 

0.5, respectively. The section type has a limited effect on the mean values of the 

reduction factors. However, the standard deviations of the reduction factors are 

affected by the section type. The section with larger asymmetry has a greater 

standard deviation of reduction factors. For example, for the area loss ratio of 

50%, the standard deviation of reduction factors of steel angle L200×100×12 is 

0.031, while the standard deviation of reduction factors of steel angle 

L200×200×24 is 0.0171. Moreover, a larger area loss ratio will also result in a 

larger standard deviation of reduction factors.  

The probability density functions (PDFs) of the reduction factor for 

different steel angles are shown in Fig. 12. Take Fig. 12(a) as an example, the 

PDF is obtained as follows. For the area loss ratio of 10%, there are 40,000 

values of reduction factors of the buckling load Pcr. The minimum value, 

maximum value, and range of these reduction factors are firstly determined. 

Then the range of reduction factors are divided into 25 intervals. For each 

interval, the number of reduction factors within this interval is determined, and 

the PDF can be calculated. For other area loss ratios, the PDF can be obtained 

in a similar way.  

From the shape of the PDF for the reduction factors of buckling load Pcr, it 

can be found that the reduction factors generally obey a normal distribution. 

With the increase in area loss ratio, the shape of the PDF becomes wider and 
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shorter, indicating a greater standard deviation of the reduction factor. Fig. 13 

compares the actual PDF and the PDF of normal distribution for the reduction 

factors of steel angle L100×100×12. Note that the PDF of reduction factors 

following the normal distribution can be determined once the actual mean value 

and standard deviation are known. The mean value and standard deviation of the 

reduction factors of buckling load Pcr for each steel angle are summarized in 

Table 3. It can be concluded from Fig. 13 that the normal distribution can reliably 

capture the characteristic of the distribution of the reduction factors.  

 
Table 3  

Mean value and standard deviation of the reduction factor of buckling load Pcr 

Section Area loss ratio Total number of Monte Carlo simulation Mean value μ Standard deviation σ 

L100×100×12 

0.1 40,000 0.9019 0.0139 

0.2 35,000 0.8016 0.0189 

0.3 30,000 0.7029  0.0221 

0.4 25,000 0.6018 0.0239 

0.5 20,000 0.5029 0.0251 

L150×150×18 

0.1 40,000 0.9005 0.0114 

0.2 35,000 0.8005 0.0153 

0.3 30,000 0.7019 0.0178 

0.4 25,000 0.6009 0.0194 

0.5 20,000 0.502 0.0199 

L200×200×24 

0.1 40,000 0.9006 0.0098 

0.2 35,000 0.8007 0.0132 

0.3 30,000 0.7015 0.0152 

0.4 25,000 0.6011 0.0164 

0.5 20,000 0.5014 0.0171 

L150×100×12 

0.1 40,000 0.8992 0.0161 

0.2 35,000 0.7973 0.0218 

0.3 30,000 0.6964 0.0248 

0.4 25,000 0.5941 0.0264 

0.5 20,000 0.4939 0.0271 

L200×100×12 

0.1 40,000 0.895 0.0179 

0.2 35,000 0.7903 0.0242 

0.3 30,000 0.6875 0.0283 

0.4 25,000 0.583 0.0307 

0.5 20,000 0.4814 0.031 

 

  

(a) L100×100×12 (b) L150×150×18 

  

(c) L200×200×24 (d) L150×100×12 

0

5

10

15

20

25

30

35

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y

Reduction factor

ALR=0.1 ALR=0.2

ALR=0.3 ALR=0.4

ALR=0.5

0

5

10

15

20

25

30

35

40

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y

Reduction factor

ALR=0.1 ALR=0.2

ALR=0.3 ALR=0.4

ALR=0.5

0

5

10

15

20

25

30

35

40

45

50

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y

Reduction factor

ALR=0.1 ALR=0.2

ALR=0.3 ALR=0.4

ALR=0.5

0

5

10

15

20

25

30

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y

Reduction factor

ALR=0.1 ALR=0.2

ALR=0.3 ALR=0.4

ALR=0.5



Liang Chen et al.  157 

 

(e) L200×100×12 

Fig. 12 Distribution of the reduction factor of buckling load Pcr 

 

  

(a) Area loss ratio of 10% (b) L150×150×18 

  

(c) L200×200×24 (d) L150×100×12 

 

(e) L200×100×12 

Fig. 13 Goodness of fit test of the reduction factor for steel angle L100×100×12 

 

6.5. Practical design method 

 

Based on the results of parametric studies, a probabilistic relationship 

between the reduction factor of buckling load and area loss ratio for steel angle 

is established, as shown in Fig. 14. Note that the reduction factors for all steel 

angles are included in Fig. 14. Therefore, for area loss ratios of 0.1, 0.2, 0.3, 0.4, 

and 0.5, there are 200000, 175000, 150000, 125000, and 100000 dots shown in 

Fig. 14, respectively. The solid blue line indicates the mean value of the 

reduction factor. The dashed red line and solid red line are the lower bound and 

upper bound for the values within one standard deviation of the mean value, 

respectively. The dashed black line and solid black line are the lower bound and 

upper bound for the values within three times the standard deviation of the mean 

value, respectively.  

Fig. 14 also gives the probability for the reduction factor within one, two, 

and three times the standard deviation of the mean value. For the area loss ratio 

of 0.1, the probabilities for the reduction factor within one, two, and three times 

the standard deviation of mean value are 0.725, 0.945, and 0.991, respectively, 

which are very close to the analytical values of 0.683, 0.955, and 0.997 for 
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normal distribution. It again indicates that the reduction factors of the buckling 

load of steel angles follow a normal distribution. It should be noted that the 

probability is calculated by the ratio of dot number satisfying requirements to 

the total dot number, rather than the ratio of segment length. For example, for 

the area loss ratio of 0.2, the probability for the reduction factor within three 

times the standard deviation of the mean value is 0.9913. However, the ratio of 

segment length within three times the standard deviation of mean value to total 

segment length is obviously less than 0.9913. This is because the distribution 

density of data fails to be shown in Fig. 14 due to the excessive amount of data.  

  

 

Fig. 14 Regression of the reduction factor of buckling load Pcr for all steel angle members 

 

7.  Conclusion 

 

This paper presents a numerical study on the bifurcation buckling load of 

steel angle members with random corrosion pits. The effects of member length, 

section type, area loss ratio, and corrosion depth on the bifurcation buckling load 

of steel angles are studied. A probability-based relationship between the 

reduction factor of buckling load and the area loss ratio of steel angles is 

proposed. The following conclusions can be drawn from this study: 

 

⚫ The reduction factors of the buckling load of steel angles obey a normal 

distribution. A larger area loss ratio will result in a larger standard deviation 

of the reduction factors.  

⚫ For steel angles with the same area loss ratio, the mean values of the reduction 

factors of different section types are very close. For area loss ratios of 10%, 

20%, 30%, 40%, and 50%, the mean values of the reduction factors of 

buckling load for steel angles are about 0.9, 0.8, 0.7, 0.6, and 0.5, respectively.  

⚫ The detrimental effects of corrosion on the torsional buckling load and 

flexural buckling load are different. Therefore, the buckling mode of steel 

angle members may changed from flexural buckling to torsional buckling due 

to corrosion.  

⚫ When the member length is small, the bifurcation buckling load of the steel 

angle is significantly affected by the corrosion depth. However, as the 

member length increases, the effect of corrosion depth tends to decrease. 
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