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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

Accurate temperature readings are vital in fire resistance tests, but conventional thermal imagers often lack sufficient 

resolution, and applying super-resolution algorithms can disrupt the temperature and color correspondence, leading to 

limited efficiency. To address these issues, a convolutional network tailored for high-temperature scenes is designed for 

image super-resolution with the internal joint attention sub-residual blocks (JASRB) efficiently integrating channel, 

spatial attention mechanisms, and convolutional modules. Furthermore, a segmented method is developed for predicting 

thermal image temperature using color temperature measurements and an interpretable artificial neural network. This 

approach predicts temperatures in super-resolution thermal images ranging from 400 to 1200°C. Through comparative 

validation, it is found that the three-neuron neural network approach demonstrates superior prediction accuracy compared 

to other machine learning methods. The seamlessly combined proposed super-resolution architecture with the temperature 

measurement method has a predicted RMSE of 20°C for the whole temperature range with over 85% of samples falling 

within errors of 30°C. 
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1.  Introduction 

 

Steel structures, despite their widespread use, suffer from poor fire 

resistance, leading to significant performance degradation, as 

exemplified by the loss of mechanical properties in portal frames at 

600°C [1]. To tackle this problem, fire resistance testing is crucial for 

assessing component performance under high temperatures. During the 

test, obtaining comprehensive and precise temperature data is paramount. 

While thermocouples offer reliable measurements, they are limited to 

single points and prone to failure, compromising efficiency. Infrared 

thermal imaging cameras offer a solution by capturing the entire two-

dimensional temperature field. However, their high cost and low-

resolution present challenges, particularly in medium to large-scale fire 

tests, where detailed temperature data are essential. 

The limited resolution of thermal imagers hinders the acquisition of 

optimal temperature data in experiments, and the small temperature 

matrix fails to precisely represent spatial temperatures, thus sparking 

interest in enhancing the resolution of instruments for production and 

cost challenges [2]. As a result, algorithmic image processing emerges as 

a cost-effective and efficient alternative. The existing interpolation 

methods [3] are swift, but their effectiveness is limited, especially when 

dealing with large scaling factors. Reconstruction-based super-resolution 

techniques [4,5], which leverage prior knowledge and predefined data 

dictionaries, offer superior image reconstruction but increase workload 

and reduce processing speed. 

With the advancement of artificial intelligence, the convolutional 

neural network (CNN) based method has emerged as the preferred 

approach due to its strong learning ability and flexible adjustability 

[6,7,8]. Utilizing the CNN architecture, this method seamlessly 

transforms low-resolution images (LR) into super-resolution versions 

(SR), ensuring close resemblance to the original high-resolution images 

(HR).  

Multiple studies have focused on refining the CNN super-resolution 

architecture, incorporating advancements such as residual learning, 

image sampling, and attention mechanisms [9]. Residual learning, 

embodied in models such as Very Deep Super-resolution Network 

(VDSR) [10], Deeply-recursive Convolutional Network (DRCN) [11], 

Deep Recursive Residual Network (DRRN) [12], and Enhanced Deep 

Residual Super-resolution Network (EDSR) [13], boosts the learning 

capacity through modular expansion and skip connections. Image 

sampling, enhanced by Shi et al. [14] with subpixel convolution, 

efficiently converts channel data to spatial features. Zhang et al. [15] 

combined channel attention [16,17] with residual blocks in their model, 

creating a high-efficiency module (RCAB). This integration maximized 

the benefits of the attention mechanism but still had an issue by 

introducing residual scaling. 

In comparison to the aforementioned visible light image SR model, 

research on thermal image processing is more constrained. Initial super-

resolution models for thermal images were primarily derived from 

visible light models:  including Thermal enhancement network (TEN) 

[18], Brightness-Based Network [19], and GAN architecture [20]. A 

significant hurdle in thermal image processing research is the challenge 

of acquiring high-quality and highly pertinent datasets. Public thermal 

image datasets [21,22] predominantly feature infrared grayscale images 

from everyday settings. These single-channel images offer limited 

assistance in training three-channel color thermal models, thus yielding 

subpar outcomes. Additionally, existing models often lack tightly 

integrated attention and residual learning mechanisms, leading to bulky 

networks. He et al. [23] employed a two-stage cascade architecture for 

×8 super-resolution, progressively restoring the image size from ×2 to 

the desired target. While effective for learning multi-scale features, its 

focus on large scaling factors results in a sizable model with reduced 

operational efficiency. These studies mainly focused on image 

resolution, ignoring its suitability for temperature measurement. Even 

with super-resolution techniques, the altered color, temperature logic, 

and image format make the enlarged images incompatible with thermal 

analysis software.  

Infrared thermal imagers in the domain of image temperature 

measurement utilize the blackbody radiation correlation formula to 

determine the color-temperature correspondence for each pixel [24]. 

However, existing color temperature measurement algorithms designed 

for high temperatures, such as two-color method [25], laser speckle 

photography [26], and image fusion techniques [27], often demand 

sophisticated and costly optical devices along with stable, vibration-free 

systems. Their intricate setup and restrictive measurement requirements 

pose significant challenges for direct application in high-temperature 

environments. 

Prediction models based on machine learning only need to be given 

input characteristics to predict the target, and this method has effectively 

proven its worth in a range of detection tasks related to fire [28,29,30] 

and structural engineering [31,32,33]. Sun et al. [34] introduced an 

enhanced BP network for adaptive spatial data sensing to measure 

tunnel ceiling temperatures. Its efficacy was validated through tunnel 

fire tests, with a prediction error of just 0.12 under dimensionless scaling. 

Chen et al. [35] proposed a machine learning method for structural 

analysis, incorporating a Physics-Informed Neural Network (PINN) to 

steer the training process. When dealing with small datasets, the 

prediction of the neural network closely resembles the results obtained 

from finite element software. The applicability and accuracy of this 

method were verified through four sets of examples. Wang et al. [36] 
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introduced an inverse model utilizing a Graph Neural Network (GNN) 

to address structural parameter identification from structural responses. 

This model transforms the truss structure into a GNN graph, delivering 

precise inversion outcomes even with limited data. Its strong 

interpretability and high potential in structural analysis make it a 

valuable tool. Sharifi et al. [37] employed artificial neural networks to 

assess the load-bearing capacity of various corroded steel beams under 

localized loads, accurately predicting the failure of these deteriorated 

beams. 

In this paper, a specialized CNN architecture designed for high-

temperature environments was proposed to address the challenges of 

low-resolution thermal images and the incompatibility of super-

resolution techniques for temperature readings in fire tests, as is shown 

in Fig. 1. This architecture was enhanced with the Joint Attention Sub-

Residual Block (JASRB), generated precise, high-definition color and 

temperature mappings. A temperature measurement approach utilizing 

artificial neural networks was developed for super-resolution images. 

Fire tests were conducted to validate the accuracy of the separated 

approach and their combination. 

 

 

Fig. 1 Overall architecture of super-resolution network 

 

2.  Super-resolution of thermal images 

 

The proposed architecture is an innovative thermal image super-

resolution (SR) network that features a multi-path structure with JASRBs. It 

has four main parts: the LR image processing part (Part 1), the preliminary 

clarification part (Part 2), the fine recovery part (Part 3), and the image 

reconstruction part (Part 4). The core of the architecture lies in the preliminary 

clarification and fine recovery parts, which use different JASRB 

configurations.  

 

2.1. Inputs and Outputs 

 

The proposed architecture is designed to enhance thermal imaging 

resolution by utilizing pairs of low and high-resolution images for network 

training. To faithfully replicate LR images captured by budget thermal 

cameras, HR images are down-sampled by a scale factor of four. The 

degradation function for this process can be stated as follows. 

 

ILR=D(I
HR

;δ)                                                                                           (1) 

 

Where ILR  denotes the original low-resolution image; while D signifies the 

Bicubic image interpolation function employed for image degradation 

mapping; IHR  represents the high-resolution image, and δ, represents the 

scaling factor, is set to 4 in this context. 

 

 

Fig. 2 Input and Output of the CNN architecture 

 

The input to the CNN is a low-resolution image that has undergone 

Bicubic interpolation for pre-upsampling (Fig. 2). This interpolation ensures 

that the image size matches the target high-resolution (HR) image, despite the 

internal clarity remaining insufficient. The objective of CNN is to produce a 

high-resolution image, with the actual output being a super-resolution (SR) 

image. In practical scenarios, the HR image remains unknown. Hence, the 

primary goal of this undertaking is to align the SR image closely with the HR 

image, thereby elevating the thermal image quality in unfamiliar settings. 

Nonetheless, discrepancies often arise between the actual and target outputs, 

necessitating optimization to narrow this divergence. 

 

2.2. Network architecture 

 

As shown in Fig. 3, the LR image processing part preprocesses input 

imagery, adjusting dimensions with bicubic interpolation to match the 

specifications of the RGB input layer. It then segments RGB images into 

48×48×3 patches for network training. The details of hyperparameter settings 

for the first convolutional layers in each part are listed in Table 1. 

 

 

Fig. 3 Overall architecture of super-resolution network 

 

Table 1 

Parameters of the first convolutional layer of each part of the network 

Position Num Filters Kernel Size Stride 

Part 2 48 7*7 1 

Part 3 Path A 64 5*5 1 

Part 3 Path B 64 7*7 2 

Part 4 3 7*7 1 

 

The preliminary clarification part aims to extract prominent features from 

thermal images using convolutional layers with few filters for efficiency. The 

large-scale features, often comprising shallow details like scene structure, can 

be adeptly extracted via convolutional layers with few filters. It employed a 

7×7 receptive field, zero-padding, and stacked M JASRBs with symmetric 

connections to minimize shallow feature loss. The output is a 48×48×48 

feature map. 

The third segment restores intricate details using multi-path learning, 

converging diverse features from varying receptive fields. Learning image 

details is more challenging than shallow features due to their intricate link 

with large structures, leading to easy loss or misinterpretation [23]. Therefore, 

more extensive parameter learning is required. Similar to the preliminary 

clarification part, Path A amplified the filter and stacked M JASRBs used for 

deeper abstraction, while Path B halved the image size and introduced K 

JASRBs (where K is an even number) with pixel shuffling [14] to obtain 

different details from Path A. Finally, the segment used the element-wise 

addition layer to fuse the features from both paths, resulting in a 48×48×64 

output patch. 

The final part, the image reconstruction part, used a 3-channel 

convolutional layer to resize the output to RGB dimensions. A 7×7 

convolution kernel aggregated features and a regression prediction layer 

produced the SR image. 

This architecture used half-mean-square error loss as the loss function of 

the neural network, which can be expressed as: 

 

Loss=
1

2
∑ (tp-y

p
)
2 HWC

p=1                                                                                  (2) 

 

where H, W, and C denotes the height, width, and number of channels of the 

input image, respectively; t and y denote the target image and the image 

predicted by the network, respectively; p is linearly indexed into each element 

of t and y. 

 

2.3. Joint attention sub-residual block (JASRB) 
 

The performance of the network is primarily defined by the architecture, 

which consists mainly of JASRBs. Traditional modules such as RCAB, which 

integrate channel attention and residual modules, often yield limited benefits 

since channel attention alone may not significantly aid training. This holds 
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especially true in the case of thermal images, where color consistency restricts 

the amount of information obtainable from color channels, thereby 

highlighting the significance of spatial attention. Therefore, relying solely on 

channel attention mechanisms can lead to deficient learning ability, impeding 

deep network training. To address this, a custom spatial attention module was 

innovatively combined with the existing channel attention module within the 

RCAB framework. 

The overall structure of the JASRB is shown in Fig. 4, which consists of 

three parts: the Convolution Module (CM), the Channel Attention Module 

(CAM, Fig. 4b) [15], and the proposed Spatial Attention Module (SAM, Fig. 

4c). The channel attention module compacts the feature graph and generates 

the channel weight matrix of 1×1×C. It demonstrates the significance of every 

channel in the feature map subsequent to the output of CM. The details of 

hyperparameter settings for the convolutional layers in each JASRB are listed 

in Table 2. All kernels in Table 2 are 3×3 in size with a stride of 1, ensuring 

network consistency and efficiency. 

 

Table 2 

Number of filters of each JASRB in different parts 

Location Num Filters Kernel Size Stride 

CM Conv1 192 256 128 

CM Conv2 48 64 64 

SAM Conv1 64 64 64 

SAM Conv2 1 1 1 

CAM Conv1 10 10 10 

CAM Conv2 48 64 64 

 

A spatial attention extraction block consists of two convolutional layers 

activated by the ReLU function [38]. The first convolution layer maps the 

features directly to the higher-dimensional space and learns them, while the 

second convolution layer integrates them into the one-dimensional space. This 

combination is straightforward and can generate a weight matrix of size 

H×W×1, representing the more important spatial position in the image. The 

expression for this part is as follows: 

 

Fs=ωI*max(0,ωE*Fo+bE)+bI                                                                      (3) 

 

g=
1

1+e-x
                                                                                                       (4) 

 

sCA=g(Fs)                                                                                      (5)                        

 

where Fs  denotes the features learned through spatial attention; ωE , bE  and 

ωI ,  bI  respectively denotes the weights and biases of the first and second 

convolutional layers of the proposed spatial attention extraction block, that is, 

the internal weights and other information of the feature learning layer and the 

feature integration layer; Fo  represents the original features; g  denotes the 

Sigmoid function and 𝑠𝐶𝐴 denotes the final spatial attention matrix. 

The output of the entire block can then be expressed as: 

 

Xi=ωi|2*max(0,ωi|1*Fo+bi|1)+bi|2                                                             (6) 

 

Fi=Fi-1+(sCA*sSA*Xi-1)                                                                                   (7) 

                                        

where ωi|1 , bi|1  and ωi|2 , bi|2  denotes the weights and biases of the first 

convolutional layer and the second convolutional layer in the residual block 

respectively; Xi and Xi-1 are the residual information between the current layer 

and the previous layer after learning; Fi-1 and Fi denotes the output features of 

the current layer and sCA, sSA is the channel and spatial attention feature matrix 

in current layer, respectively. 

 

 

(a) Joint attention sub-residual block (JASRB) 

 

(b) Channel attention module (CAM) 

 
(c) Spatial attention module (SAM) 

Fig. 4 Architecture of CAM, SAM and JASRB 

 

By integrating both channel and spatial attention mechanisms within the 

skip connection, improved residual scaling efficiency and enhanced learning 

of spatial image features can be achieved, as evident in sections 2.4.2.2 and 

2.4.3.3. 

 

2.4. Training of the convolutional neural network 

 

2.4.1. Training details 

The GPU used for training was NVIDIA GeForce RTX3060Ti, and the 

CPU was Intel Core i7-10700CPU. During the training process, the minibatch 

size was set to 32, and the optimizer was Adam optimization [39]. For a total 

of 100 epochs of training (a total of 120000 iterations), the learning rate was 

set to 0.001 and decreased to half of the original value every ten rounds during 

the training process. Each training image was randomly cropped into 64 

patches, with random shuffling performed in each iteration, and L2 

regularization was applied to prevent the gradient from being excessively 

large. The network training platform was MATLAB R2022b. The initial 

weight and bias learning rate of the convolution layer were set as 1. 

 

2.4.2. Dataset 

In this study, 750 thermal images were employed, which were partitioned 

into a training set comprising 600 images, a validation set of 50 images, and 

two test sets, each containing 50 images. The first test set served for the 

ablation study aimed at refining the architectural hyperparameters, whereas 

the second test set was utilized for the ultimate model comparison. This 

approach mitigated the risk of hyperparameter optimization outcomes being 

exclusively tailored to a subset of the dataset. Fig. 5 displays a schematic 

overview of the thermal images dataset captured in various fire scenes, along 

with the shooting equipment. Utilizing thermal images from diverse scenes 

enhances the generalization of CNN and elevates the quality of training. 

The Fotric348 series handheld thermal imager was employed, boasting a 

640×480 thermal image resolution. The specially formatted images of the 

instrument can export the temperature matrix using the software of the 

manufacturer, AnalyzIR. Its uncooled infrared focal plane detector has a 

response band of 7-14μm and can detect temperatures between -20°C and 

1200°C. Thermal image emissivity is set to 0.95, in this part, emissivity does 

not affect the quality of the image. The reasons for using this setting are 

explained in detail in section 3.4.1. 
 

 

Fig. 5 Shooting equipment and some scenes 



Yi-Chuan Dong et al.  172 

 

The thermal imager was positioned 4~15m from the fire source to obtain 

the pictures, and such shooting distance is typical for civil engineering 

applications. To ensure stability and prevent focusing issues due to external 

factors, a tripod was used throughout the image capture process. 

 

2.5. Experimental simulation 

 

2.5.1. Evaluation index 

The evaluation metrics for the proposed super-resolution network include 

Peak Signal-to-noise Ratio (PSNR), Structural Similarity (SSIM), and Natural 

Image Quality Evaluator (NIQE) [10]. PSNR measures the difference between 

HR and SR images based on the maximum pixel value and root mean square 

error. The calculation formula of PSNR is: 

 

PSNR=10log
10

peakval
2

MSE(A,Ref)
                                                                                (8)  

   

where peakval specifies the range of the image data type. For 8-bit images, the 

peakval value is 255; MSE (A, Ref) represents the mean square error between 

the specified image A and the reference image Ref. A higher PSNR indicates 

smaller differences, with values between 30 and 40 considered acceptable 

distortion loss and above 40 indicating near-original quality. 

SSIM assesses the similarity of two images by evaluating brightness, 

contrast, and structure independently, ranging from 0 (no similarity) to 1 

(identical images). The calculation formula of SSIM is: 

 

SSIM(x,y)=[l(x,y)]
α⋅[c(x,y)]

β⋅[s(x,y)]
γ
                                                             (9) 

                   

l(x,y)=
2μxμy+C1

μx
2μy

2+C1
                                                                                                (10)  

 

c(x,y)=
2σxσy+C2

σx
2σy

2+C2
                                                                                               (11) 

 

s(x,y)=
σxy+C3

σxσy+C3
                                                                                                  (12) 

 

where l(x,y) , c(x,y)  and s(x,y)  represent brightness term, contrast term and 

structure term respectively; µx, µy, σx, σx and σxy represent the local mean, 

standard deviation and cross-covariance of the image x, y. C1, C2 and C3 rep-

resent three constants respectively, where C1=(K1L)2, C2=(K2L)2, C3=0.5* C2. 

K1 and K2 are 0.01 and 0.03 respectively, and L represents the pixel value 

range, which is 255 for 8-bit images. 

NIQE, which does not require a reference image, assesses naturalness by 

measuring distribution differences against multivariate natural scenes, with 

lower values indicating better visual quality in line with human perception 

[40]. 

 

2.5.2. Ablation study 

To validate the hyperparameter settings, the impact of spatial attention 

mechanisms, and the use of double residual scaling factors, three ablation tests 

were conducted to assess the optimal number of network modules, evaluate 

the significance of JASRB components, and verify the residual scaling 

approach within JASRB. 

 

2.5.2.1. JASRB module quantity analysis 

The number of JASRBs in the two paths in the network determines the 

prediction accuracy and other critical indicators of the neural network. The 

output of this super-resolution task will be used in image temperature 

recognition. Any inaccurate prediction may significantly affect the 

temperature output, and therefore the SR image should be as clear as possible. 

The number M of two modules was set from 3 to 5, and the module 

number K of path B was set as 2 or 4. Table 3 shows the prediction results of 

different module numbers. Since the learnable parameters of the comparison 

module did not increase significantly, and the images were relatively clear, the 

changes of indicators were relatively small. The clearer the image, the more 

difficult it is to restore. The reason for the fact is that only the delicate parts of 

the image were left, and it was also challenging to discover them. The 

improvement of index represents the degree of the repair of details, every 

increase of 0.1 in PSNR is more helpful for detail recovery. These details 

hardly have a significant impact on the indicators, but they do have a great 

impact on the image temperature measurement in the third section of the paper. 

 

Table 3 

Number of JASRBs 

Number of M and K PSNR(dB) SSIM Time(s) 

3, 4（baseline） 39.9947 0.9986 1.55 

3, 2 39.9626 0.9986 1.32 

4, 2 40.0961 0.9986 1.56 

4, 4 40.2143 0.9987 1.57 

5, 2 39.7860 0.9986 1.72 

5, 4 0 0 0 

 

As the number of modules increased, the network training effectiveness 

improved until M reached 5, whereupon performance started to deteriorate, 

signifying the peak capacity of network. Adding more depth beyond this point 

failed to facilitate meaningful learning. Furthermore, as the module count K 

rose, gradient explosion ensued, leading to unbounded training losses. When 

considering single-image reconstruction time, using the minimum number of 

modules yielded the fastest computation. Nevertheless, prioritizing image 

quality, the model with both M and K set to 4 emerged as the optimal choice. 

 

2.5.2.2. Internal importance analysis of JASRB 

To validate the significant impact of incorporating spatial attention on the 

network, and to precisely assess the importance of each submodule for 

guiding parameter adjustment, a submodule with minimal parameters was 

employed as the baseline model. Subsequently, a comparison was made by 

elevating the parameters of the three respective submodules to a certain level. 

The comparison results, summarized in Table 4, revealed that the SAM 

was nearly as crucial as the CM, while the CAM had a more negligible 

contribution. Specifically, the PSNR of the CM and SAM increased by 0.5167 

and 0.4973, respectively. The superior performance of the residual block can 

be attributed to its direct connection with the original information, preventing 

information loss during interlayer transfers. The improvement of proposed 

SAM closely approached the optimal value, despite not being directly linked 

to the original features. 

 

Table 4 

Comparison of the importance of each part of the sub-module 

Models PSNR(dB) SSIM Parameters 

Baseline model 38.0406 0.9976 212.3k 

Add parameters in CM 38.5573 0.9980 378.3k 

Add parameters in CAM 38.2125 0.9977 379.1k 

Add parameters in SAM 38.5379 0.9979 380.1k 

 

Therefore, the CM and SAM should be considered more when assigning 

learnable parameters. This principle was followed when deciding the 

parameters within the module in this paper. 

 

2.5.2.3. Residual scaling 

Residual scaling, the practice of multiplying residuals by a coefficient 

ranging from 0 to 1, aims to enhance network stability and accuracy. 

Typically, based on prior research, this scaling factor was set between 0.1 and 

0.3 [13,41]. Nevertheless, this approach lacks adaptability as it uniformly 

applies the same factors across both shallow and deep network layers, 

potentially leading to over- or under-scaling that can hinder network 

performance. 

In contrast, JASRB introduce two attention modules that learn the 

residual scaling value dynamically. These modules serve dual purposes: as 

weight matrices of attention mechanisms and as residual scaling factors.  

To validate the superiority of the proposed method over empirical 

coefficient settings, several comparative experiments were conducted: A. 

Using learnable residuals scaling of SAM and CAM (the proposed method); B. 

Replacing the spatial attention with a scaling layer with a fixed parameter of 

0.2, which corresponds to a small scaling coefficient; C. Replacing the SAM 

with a scaling layer with a fixed parameter of 0.8, which corresponds to a 

large scaling coefficient; D. Without any attention, connect the residuals 

directly to a scaling layer with a fixed parameter of 0.2. E. Use CAM only 

(RCAB method). All tests only employed one module to ensure identical 

amounts of learnable parameters across methods, resulting in minimal 

variations in RSNR and SSIM, while still illustrating the impact of 

incorporating various methods. 
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The results in Table 5 show that method A achieved the best results, 

indicating that the proposed method was the best. Meanwhile, the comparison 

of methods B and D revealed that the effect of using attention was 

consistently better than that of setting residual scaling by experience. The 

comparison of methods B and C shows that a lower scaling factor was 

generally better, which was the similar trend in the reference [40]. Method E 

revealed that single-channel attention struggled to learn image features 

effectively, and its residual scaling was also inadequate. 

 

Table 5 

Comparison of different residual scaling methods 

Methods PSNR(dB) SSIM 

A 38.7357 0.9981 

B 38.0389 0.9977 

C 37.9230 0.9976 

D 36.7100 0.9975 

E 34.5550 0.9954 

 

In addition, if only a single type of attention mechanism was used 

(Method E), the residual scaling coefficient was directly the attention weight 

matrix. Only one attention matrix may still lead to a high scaling coefficient, 

and these points may still not be fully scaled. In the proposed approach, two 

attention matrices were multiplied and the resulting joint attention matrix 

consisted of very small values. This ensured that the pixels not been fully 

scaled were further scaled. Essentially, the joint matrix imposed a stronger 

scaling effect on those features, and this scaling effect was adaptively learned. 

Fig. 6 and Fig. 7 depict the training progress of the refined model 

following ablation test optimization. During the initial training phase, both the 

loss function and root mean square error undergo fluctuations before steadily 

declining to zero. Additionally, the high validation frequency of the validation 

set (every 50 iterations) appears to cause slight oscillations, but these remain 

within an acceptable range of 0~1. Hence, it can be inferred that the network 

has been effectively trained. 

 

 

Fig. 6 Training process: loss function 

 

 

Fig. 7 Training process: Root mean square error 

2.6. Training results 

 

The proposed method was compared with four super-resolution 

techniques: bicubic [3], EDSR [13], PAN [42], and GSRTI [43] which are 

renowned for their performance in image enhancement. These methods 

incorporate various modules such as residual blocks and attention mechanisms. 

EDSR, PAN and GSRTI were replicated using Matlab deep network 

designer, adhering to the architecture of the original paper. The main 

difference between the original model and our replication is the use of MSE 

loss, as we prioritized architectural performance and considering that the 

PSNR and SSIM by MSE loss is comparable to other loss functions [44]. All 

models used the training and test sets outlined in section 2.4.2, undergoing 

100 training rounds totaling 240,000 iterations. 

Table 6 and Fig. 8 present reconstruction results alongside others. The 

proposed method excelled in all evaluation metrics. Bicubic and GSRTI 

showed limited improvement. While EDSR and PAN offered some clarity, 

their PSNR and SSIM scores were notably lower due to color correspondence 

issues. Specifically, in the RGB color model, the same color can be 

represented by multiple different RGB values. The evaluation metrics 

revealed that the EDSR and PAN models learned incorrect dolor 

correspondence relationships. Conversely, the proposed method excelled in 

indicator results and image clarity with no color correspondence errors and 

closely resembling the HR image, and exhibited competitive performance. 

 

Table 6 

Comparison between the SR method in this paper and other methods 

Methods PSNR(dB) SSIM NIQE 

Bicubic 32.4 0.9938 5.6395 

EDSR 24.457 0.9804 5.0797 

PAN 21.951 0.9476 4.9926 

GSRTI 32.635 0.9942 5.1761 

Proposed 40.129 0.9987 4.8965 

 

 

Fig. 8 Sample of the reconstructed image 

 

3.  Prediction of image temperatures 

 

3.1. Prediction method 

 

Enhancing image resolution alone is insufficient to justify the use of SR 

images for temperature measurement. Consequently, there is an urgent need to 

devise a temperature measurement method for SR images that spans a wide 
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range. In current unenclosed space fire tests, the peak temperature, influenced 

by fuel, seldom exceeds 1200°C [1,45]. Thus, a temperature measurement 

range of 400 to 1200 °C was selected. 

In thermal imaging, a given color can signify varying temperatures. This 

is due to the fixed color scale but adjustable temperature range during imaging. 

This complexity makes it challenging for CNN to predict temperature 

distributions across various scenes. Additionally, the efficiency of CNN is 

constrained by its architecture, leading to slow training and application. 

Contrary to CNN, Artificial Neural Networks (ANNs) only need some pixels 

from the thermal image along with their corresponding temperatures to learn 

the color-temperature relationship. This simplified approach can then be 

directly applied to measure specific points in positional thermal images, 

enhancing deployment efficiency and streamlining the temperature prediction 

process compared to CNN. 

An ANN-based method was proposed. Since the temperature range 

involved in high-temperature scenarios is extensive, using one neural network 

to predict all pixels to be measured within 1200°C directly is tough, and its 

training requires too many samples. As shown in Fig. 9, the temperature 

samples were divided into eight segments from 400°C to 1200°C with a 

temperature difference of 100°C. Correspondingly, eight simple ANN models 

were established, and each was tailored to correspond with a specific 

temperature segment.  

Meanwhile, datasets were made for each ANN model. The dataset was 

then divided into many small sections every 100°C. For images falling within 

a specific temperature difference segment, pixels are consistently classified 

into corresponding small temperature sections based on their actual 

temperature, while also saving pixel color and the temperature information of 

the entire image. This information serves as the input and output for the ANN, 

as further detailed in section 3.2. 

The case in Fig. 10 shows the overall progress of the section of 900°C. 

The first small square in the upper left corner represents the data with a small 

temperature segment of 900~1000°C, which is the highest temperature range 

in this situation. The lowest temperature in the lower right corner is from 0 to 

100°C, which represents the lowest temperature range.  

Datasets were made and trained separately for HR and SR images, and 

the corresponding model was trained using the corresponding sample sets to 

ensure the accuracy of the network. 

 

 

Fig. 9 Temperature division scheme 

 

 

Fig. 10 Sample selection process of each small temperature range in the 900°C 

temperature difference section 

 

3.2. Network architecture 

 

In every ANN model, the input consists of the brightness value of a 

specified pixel in the thermal image, as well as the maximum and minimum 

temperature values from the corresponding thermal image, and the model 

outputs the estimated temperature of that specified point. Temperature 

recognition was performed using a single hidden layer feedforward neural 

network, the structure of which is shown in Fig. 11. 

 

 

Fig. 11 Artificial neural network architecture 

 

Given the wide temperature range and the need to train multiple neural 

networks with large sample sizes, efficiency becomes crucial. The Levenberg-

Marquardt backpropagation algorithm [46] was utilized in this study, 

combining the best gradient descent and Gauss-Newton methods. This 

approach ensures both rapid convergence near the optimal solution and 

robustness even when far off, and it uses the MSE loss as the loss function. 

The algorithm is calculated as follows: 

 

Xk+1=Xk-[J
TJ+μI]

-1
JTe                                                                               (13)   

 

   where Xk  and Xk+1  represent the current and next solution vectors 

respectively; J  represents the Jacobian matrix; μ  is the damping factor; I 

represents the Identity matrix; e represents the error vector. 

 The cornerstone of this approach lies in the utilization of a damping 

factor μ for adaptive adjustment during iterations. When μ is set to zero, the 

algorithm transforms into the Newton method, renowned for its rapid and 

precise convergence near the error minimum. Conversely, as μ increases, the 

algorithm shifts towards the gradient descent method. The ultimate objective 

is to transition to the Newton method as swiftly as possible, with μ undergoing 

adaptive reduction in each iteration, thereby ensuring efficiency and accuracy 

in neural network training. 

 

3.3. Interpretation of neural network model 

 

The black box characteristic of artificial neural networks limits their 

transparency, as they can only produce predictions without explaining how 

those predictions are generated. ANNs cannot reveal the specific influence 

and rationale behind each effect of the input on the prediction outcomes, 

thereby challenging the trustworthiness of the model [47]. The Shapley 

additive interpretation proposed by Lundberg et al. [48] can quantify the 

contribution of each feature in the ANN and consider the mutual influence 

between features. The Shapley value of the i-th feature of query point x is 

defined by the value function ν: 

 

φ
i
(νx)=

1

M
∑

νx(S∪{i})-νx(S)

(M-1)!

|S|!(M-|S|-1)!

S⊆μ{i}                                                                      (14)    

 

where M  is the number of features; μ  is the set of all features; |S|  is the 

number of elements in set S; νx(S) is the value function of the feature of 

measurement point x in set S, and its value represents the expected 

contribution of the features in S to the prediction of measurement point x.  

The Shapley value is primarily utilized for explaining local samples, 

which involves multiple neural networks with tens of thousands of samples 

each, incurs extremely high computational costs. To circumvent this, four 

extreme temperature scenarios was used to interpret the relationship of the 

input arguments and the output argument in the proposed neural network 

models: a. A neural network temperature segment operating within 400°C 

(spanning from 0~500°C), specifically measuring temperatures within the 

range of 400 to 500°C. b. The same neural network temperature segment as in 

scenario a, but now measuring temperatures only within the range of 0~100°C. 

c. A neural network temperature segment operating within 1100°C (spanning 

0~1200°C), particularly attending to temperatures within the bracket of 

1100~1200°C. d. The neural network temperature segment from scenario c, 

but with a focus on temperatures within the interval of 0~100°C. 

Fig. 12 shows the Shapley values for the features of the SR neural 

network model in the four scenarios. These values revealed the significance of 

the three inputs of the neural network. The color, crucial in thermal imaging 

for temperature detection, was reflected by brightness, which had high 

Shapley values. The network also used max and min temperature values to 

control the temperature measurement range. While these two features cannot 

determine temperature directly, they played a key role in controlling the 
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temperature output results in different temperature ranges.  

In scenarios a and c, where the temperature measurement ranges align 

with the highest temperatures reachable by their respective neural networks, 

the neural network inputs positively impact the output, driving the network to 

output high-temperature predictions. Conversely, in the extreme low-

temperature cases of b and d, the Shapley values are uniformly negative, 

indicating that the input features decrease the output temperature. 

 

     

Fig. 12 Shapley values of SR model under four extreme temperature scenarios 

 

3.4. Training of the artificial neural network  

 

3.4.1. Training details 

Unlike super-resolution architecture training, the image temperature 

measurement dataset demands thermal images spanning various temperature 

ranges. A total of 233 high-temperature flame scene images from the fire tests 

in section 2.4.2 were selected, ensuring 10,000 samples covering all small 

temperature segments within each range.  

The emissivity of the thermal image remains set at 0.95. This is because, 

in this method, instead of focusing on a specific object measurement point, the 

entire spatial temperature field is measured, with the emissivity representing 

that of the air. Moreover, the primary aim of the methodology of this paper is 

to present a color temperature prediction approach, and a fixed emissivity 

effectively streamlines the temperature measurement process. 

For each sub-segment, the data was split into training (70%), validation 

(15%), and testing (15%) sets. This section presents prediction results using 

these test sets. Both HR and SR image datasets were created using identical 

methodologies and images, with the HR dataset facilitating network 

optimization. 

Before training, the normalization function was used in Matlab to 

normalize the data set within ±1. The feedforward neural network was carried 

out in the fitting toolbox in Matlab R2022b, and the network was trained for a 

maximum of 1000 rounds. Several early termination conditions were set, and 

these specific termination conditions can be found in the function “trainlm” in 

Matlab. All trainings were performed three times to minimize the deviation 

caused by different initial random parameters. 

 

3.4.2. Evaluation indicators 

Four indicators were used to comprehensively compare the overall error, 

prediction stability, and number of outliers in the dataset. RMSE serves as a 

widespread metric for assessing regression models, efficiently identifying 

substantial errors. A minimal RMSE is desirable for an optimal model. The 

percentage of sample errors within ±30°C provides a comprehensive overview 

of the prediction sample, emphasizing that a high-quality prediction requires a 

balance between low error rates and consistent predictability. The MAE 

indicator resembles RMSE in measuring network errors but offers a simpler 

calculation and reduced sensitivity to outliers. The point where the sampling 

error is beyond ±100°C is called the flawed point. These points cannot be 

accurately predicted by the network model, which can indicate the 

approximate error limit of the network. 

 

3.4.3. Optimization of neuron number  

The number of neurons is crucial to the network prediction results, and an 

appropriate number of neurons can improve the network prediction accuracy. 

In this section, the number of neurons was selected as 3, 5, and 10 to represent 

fewer, medium, and more neurons, respectively. Tests were performed on the 

HR image dataset, and the evaluation indicators are the main indexes. Figs. 13 

and 14 compare the training results. The 3-neuron model showed the best 

accuracy and stability in all evaluation indicators. Using more neurons for 

simple tasks can easily cause a mismatch between network and task 

complexity, thereby reducing the training effect. In this task, using a low-

complexity three-neuron model demonstrated the highest accuracy and 

stability. 

 

 

Fig. 13 RMSE of different neurons 

 

 

Fig. 14 Proportion of samples within ±30°C of prediction error in different neurons 

 

Fig. 15 and Fig. 16 depict the synchronized convergence of the training, 

test, and validation sets after optimizing the neuron count in both the lowest 

(400°C) and highest (1100°C) temperature difference segments. No adverse 

effects, such as overfitting, were observed. The training process of the re-

maining temperature difference sections was roughly the same. Due to space 

limitations, only the training process of the lowest and highest temperature 

difference sections is shown here. 

 

 

Fig. 15 Proportion of samples within ±30°C of prediction error in different neurons 

 

 

Fig. 16 Proportion of samples within ±30°C of prediction error in different neurons 
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3.5. Training results 

 

The results in Table 7 show the prediction accuracy of both the HR and 

SR images using the proposed method. Please note that the accuracy of the 

neural network, trained using HR images, solely serves as a benchmark for 

comparison with the network trained using SR images. Simultaneously, the 

HR image training outcome represents the peak prediction accuracy attainable 

by the proposed color temperature prediction method for high-definition 

images. In reality, the HR image remains unknown, yet the SR image 

generated by this method demonstrates prediction accuracy similar to the HR 

image, which was revealed by the "Deviation" in Table 7. This suggests that 

the CNN super-resolution framework described in section 2 has successfully 

learned to achieve remarkable accuracy in representing color temperature 

relationships. 

The average MAE was 14.2°C, with over 80% of samples falling within 

an error range of ±30°C. Please note that the temperature measurement range 

examined in this paper reaches up to 1200°C, and an error of this magnitude is 

clearly tolerable. This underscores the efficacy of our proposed method and 

the optimized ANN for high-temperature prediction tasks. 

 The error in color temperature prediction by the neural network may 

stem from the utilization of distinct prediction principles: formulas are 

typically employed for thermal cameras, whereas neural networks are used in 

the proposed method, potentially causing color-temperature inconsistencies. 

In addition, prediction accuracy was slightly lower above 900°C, likely due to 

environmental factors affecting the thermal camera. 

Regression analysis on the neural network reveals that the predictions 

align accurately with target results, as is shown in Fig. 17. Most samples fell 

within the 95% confidence interval, indicating good responsiveness. In 

summary, models trained with SR images showed no significant degradation 

in prediction results. 

 

Table 7 

HR/SR image prediction accuracy 

Segemnts

（℃） 
RMSE(°C) MAE(°C) Error in ±30(%) Number of faults 

HR SR HR SR HR SR HR SR 

1100 21 22.4 16.1 17.4 82.4 81.5 8 24 

1000 22.3 26.5 19.5 16 90.4 81.6 134 129 

900 19.1 23.7 15.5 18.6 88 80.6 1 4 

800 10.6 15.1 8.3 11.8 99.3 95.4 0 1 

700 12.7 19.1 9 13.8 97.3 90.3 6 24 

600 9.6 16.3 7.5 11.5 99.3 93.4 0 9 

500 16.9 15.4 12.3 10.3 96.9 94.1 0 5 

400 16.7 16.9 14.6 13.9 96 94.8 0 3 

Average 16.1 19.4 12.8 14.2 93.7 89 19 25 

Deviation 3.3 1.4 4.7 6 

 

 

Fig. 17 Linear regression of SR image model 

 

3.6. Model comparison 

 

In section 3.5, the image temperature measurement technique exhibited 

good accuracy when being trained via neural networks. Nevertheless, distinct 

machine learning models often excel in specific scenarios. To underscore the 

robustness of the proposed temperature prediction approach, a comprehensive 

evaluation was conducted using various machine learning models, including 

SVM [49], kernel regression [50], regression tree [51], and linear regression 

[52]. For fairness, the same optimization algorithms, training, and test sets 

were employed as outlined in sections 3.4. 

Figs. 18 and 19 revealed that the SVM and kernel regression exhibited 

higher errors and regression tree and linear regression demonstrated 

reasonable accuracy. However, considering prediction accuracy and stability 

across all temperature segments, a notable disparity remained between 

existing models and the proposed neural network. The poor performance of 

these four models stemmed from a mismatch between their complexity and 

the actual task complexity, resulting in either redundancy or waste. 

 

 

Fig. 18 RMSE of different machine learning models 

 

 

Fig. 19 Proportion of samples within the error of different models within ±30°C 

 

4.  Test validation 

 

To validate the wide applicability of the proposed method in high-

temperature environments, an extra fire test was conducted an extra fire test to 

assess the performance of both the super-resolution and prediction networks. 

 

4.1. Test environment 

 

Fig. 20 depicts the entire test scene for a set of cables coated with fire-

resistant and flame-retardant sealant and with two ends on support. An oil 

basin filled with 30L of diesel oil was centrally positioned at the bottom and 

ignited. The thermal imager, situated 5 meters opposite the cable (Fig. 20d), 

was set to record the scene. The environmental temperature was set to 20°C 

with external optical temperature, and the relative humidity of 0.5, emissivity 

of 0.95, and picture noise reduction were used. Throughout the test, a thermal 

camera was applied to observe temperatures ranging from 0 to 1250°C. 

 

 

Fig. 20 Realistic fire test scenario of bridge cables 
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All SR images underwent processing based on the method outlined in 

section 2, while test sets for HR and SR images were generated using the 

color temperature measurement model as detailed in section 3.1. Given the 

brief shooting duration, each experiment produced a limited dataset. The 200 

samples per temperature range were selected for testing. This resulted in a 

total of 800 test samples for a temperature difference segment of 400°C and 

2400 samples for a segment of 1100°C. 

 

4.2. Test results 

 

By comparing the predicted outcomes with the actual thermal image 

outputs, the discrepancies are delineated in Table 8 and illustrated in Figs. 21 

and 22. A slight decrease in predicted performance was found compared to 

previous scenarios. While RMSE, MAE, and the percentage of errors were 

within 30°C showing minor changes in degradation. Specifically, RMSE 

remained stable at approximately 20°C, and the proportion of samples with 

prediction errors within 30 °C only dropped slightly in certain sections, 

ranging between 70% and 80%. This performance degradation was expected 

in new scenarios as the network model may not have learned all relevant 

information. Nevertheless, the minimal decrease demonstrates the good 

generalization and accuracy of the proposed HR and SR temperature 

prediction model. 

 

Table 8 

HR/SR image prediction accuracy under the new scenario 

Segemnts

（℃） 

RMSE(°C) MAE(°C) Error in ±30(%) Number of faults 

HR SR HR SR HR SR HR SR 

1100 25.5 21.5 19.8 18.1 71.2 85.7 0 0 

1000 22.9 25.0 18.7 19.6 83 75.8 0 0 

900 11 20.5 8.6 16.1 98.9 85 0 0 

800 14.8 18.2 12.2 15.1 97.6 90.6 0 0 

700 12.7 19.8 9.9 15.6 97.5 87.9 6 0 

600 13 17.7 9.7 13.6 96.6 80 0 0 

500 25.6 15.4 23.3 11.4 70.2 94.5 0 0 

400 20.9 22 19.8 19.4 94.4 84.4 0 0 

Average 18.3 20 15.2 16.1 88.7 85.5 0 0 

Deviation 1.7 0.9 3.2 0 

 

 

Fig. 21 HR model prediction results in new scenarios 

 

 

Fig. 22 SR model prediction results in new scenarios 

 

4.3. Discussion 

 

In section 3.6, it was observed that both the SVM regression model and 

the linear regression model can predict temperatures, albeit with slightly lower 

accuracy than the proposed model in the test set. To further evaluate the 

performance of the proposed method, the SR models were employed to 

specifically compare the errors of these ANN models. 

The results can be found in Figs. 23 and 24. The proposed method 

consistently demonstrated the highest accuracy across most temperature 

ranges, with minimal and stable error fluctuations. Although the regression 

tree model showed good accuracy in certain temperature ranges, it exhibited 

large prediction errors in the 600°C and 1000°C ranges, indicating potential 

instability during flame ignition or sustained burning. Given reliable 

temperature data, the linear regression model was proved to be significantly 

less accurate than the regression tree model, rendering them unsuitable for 

practical applications. 

 

 

Fig. 23 RMSE of different machine learning models in new scenarios 

 

 

Fig. 24 Proportion of samples within the error of different machine learning models 

within ±30°C in new scenarios 

 

5.  Conclusions 

 

This paper proposed a CNN super-resolution architecture tailored for 

thermal images in fire scenes, along with a color temperature prediction 

method for enhanced images. The superiority of the proposed method was 

validated against fire tests results. The following conclusions can be drawn: 

(1) The JASRB module, integrating spatial and channel attention, was 

proposed for constructing the CNN architecture. This integration 

notably enhanced the super-resolution of images. With four modules in 

each core part, the architecture optimized super-resolution, achieving a 

PSNR of 40.214 dB and an SSIM of 0.9987. It not only refined image 

clarity but learned accurate color-temperature mappings. 

(2) A color temperature measurement method was proposed for wide 

temperature ranges, utilizing an interpretable ANN. This network 

incorporated brightness and temperature data from designated points to 

enhance temperature predictions. Shapley analysis revealed that 

brightness significantly influenced the predictions of the network. 

Optimal performance was observed with three neurons in the ANN, 

yielding RMSE of 16.1°C and 19.4°C for HR and SR images, 

respectively. Notably, nearly 90% of test sample errors fell within 

±30°C. 

(3) By integrating super-resolution with the image temperature 

measurement model, the network effectively accomplished temperature 

prediction tasks. Additional fire test validated that the unknown thermal 

images maintained high prediction accuracy after super-resolution 
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processing. Furthermore, it is worth noting that the three-neuron neural 

network approach demonstrated superior prediction accuracy compared 

to other machine learning methods. 
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