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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

Discrete screws can introduce discontinuities at the interface of built-up plates, leading to various buckling modes in 

cold-formed steel (CFS) built-up plates, namely coordinated buckling and delamination buckling. The impact of these 

buckling deformation modes on the stability mechanism of CFS screw-connected built-up plates is significant and cannot 

be overlooked. Consequently, this paper establishes theoretical models for both buckling modes. Analytical solutions for 

the critical buckling stress (CBS) of the screw-connected built-up plate under these two modes are derived. The validity of 

the buckling modes and the analytical solutions is confirmed through experimental verification. The results indicate that: 

(1) delamination buckling is invariably a higher-order mode in comparison to coordinated buckling, and as such, only 

coordinated buckling is required for calculating the CBS; (2) the CBS calculation method proposed in this paper aligns 

more closely with the actual mechanical behavior of screw connections in CFS built -up plates. 
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1.  Introduction 

 

Cold-formed steel (CFS) members are widely used domestically and 

internationally due to their flexible forming, simple production process, and 

high post-buckling strength. The built-up members assembled using 

self-drilling screws are commonly used in engineering circles. The stability of 

a single plate has been studied by Timoshenko [1] and the relatively perfect 

elastic stability theories have been established [2,3]. The CFS built-up 

members are being used to meet the increasing demand for practical projects in 

recent years. Self-drilling screws have gradually become one of the primary 

methods for connecting composite plates due to their simple construction, 

excellent connection stiffness, and high bearing capacity [4-6]. 

Therefore, scholars have studied the mechanical characteristics of CFS 

composite plates [7-9]. The results indicate that the shear capacity of 

self-drilling screw groups exhibits a "group reduction effect". Recently, the 

influences of screws on the high-strength (G550) CFS members were 

experimentally and numerically investigated [10]. Different behaviors that 

occur simultaneously in the screw connection test were successfully simulated: 

steel plate tearing and pulling out, end plate failure, screw tilting, and fracture. 

The shear behavior of the CFS plate connected by self-drilling screws was 

studied using experimental, numerical, and analytical models. Three typical 

failure modes were identified [11]. A model was proposed and calibrated to 

predict the shear deformation of the screw built-up plate. A revised reduction 

factor for the bearing capacity is presented based on the Australian Standard. 

The shear behavior of self-drilling screw connections in CFS plates was 

studied through experiments and numerical analysis. Three typical failure 

modes were identified through research, and it was found that these three 

failure modes are closely linked to the ratio of screw diameter to plate 

thickness [12]. Liu [13] conducted an experimental and numerical 

investigation of screwed connections of CFS plates, studying the shear strength 

and failure modes of the specimens. A calculation method for determining the 

bearing capacity was proposed. Screw connections have been extensively used 

in CFS constructions due to their convenient installation and high load-bearing 

capacity. A sophisticated finite element model was developed to analyze the 

pull-out performance of screw connections. It is indicated that the failure types 

of the specimen include screw hole compression failure and screw shear failure 

[14]. 

CFS is often assembled using screw fasteners because they can be easily 

drilled through thin sheets of steel [15-21]. However, individual screws can 

cause discontinuities in the interface of the built-up plate. Therefore, the 

impact of screws on CFS built-up members cannot be ignored. Ting et al. 

[22-24] conducted experimental and numerical simulation studies on the 

influence of screw arrangements and screw diameters on the bearing capacity 

of various types of CFS built-up members. Owing to the shear action of the 

screw [25], the buckling mode and failure type of the built-up part of the 

member will change compared to the member without the influence of the 

screw. Therefore, screws are an important factor that affects the capacity of the 

CFS built-up members. Additionally, the failure mode of the screw will also 

impact the ultimate capacity of the built-up member [26,27]. Previous studies 

have focused on the mechanical behavior of CFS built-up members. However, 

the research on the buckling mechanism and critical buckling stress (CBS) of 

composite members in CFS built-up structures is still incomplete. 

The most significant feature of the SBP is the discontinuity of the 

connection interface. However, due to this structural property, the application 

of the small deflection theory in the SBP raises the following two problems 

that need to be considered: 

(1) There may be either coordinated buckling with the same deformation 

direction or delamination buckling with the opposite deformation direction 

between each single plate due to the discontinuity of the connection interface 

between the SBP. It remains to be studied whether the delamination buckling is 

considered when studying the CBS of the SBP. 

(2) The discontinuity in the screwed connection may cause the shear 

deformation of the SBP during buckling. However, the shear deformation can 

also be constrained extent by discrete screw fasteners. While the effects of 

shear deformation of the built-up plate and screw constraint are not reflected in 

the current design method for the CBS. 

Therefore, this paper investigates the instability mechanism of the SBP by 

using a four-sided simply supported plate as an example. The SBP in this paper 

is extracted from the built-up webs in the CFS back-to-back built-up column, 

as presented in Fig. 1(a). The constraint of the flanges on the webs is assumed 

to be a simply supported edge. The connection between the column ends and 

the end plates through spot welding is also considered a simply supported 

boundary condition. Therefore, a screw built-up plate with simply supported 

on four sides is established, as shown in Fig. 1(b). 

The possible instability deformation modes are analyzed, and the 

calculation models of different deformation modes are established by 

comparing the various buckling modes between the built-up plate and the 

single plate. The analytical expression of the CBS for the built-up plate was 

derived considering the effects of different deformation modes on the structural 

behavior of the plate. The influence of various deformation modes on the SBP 

is then examined to identify the specific instability mode of the built-up plate. 

Finally, the discussion explores the influences of boundary conditions on the 

instability modes of the SBP. 
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(a) Screw built-up plates                                          (b) Boundary conditions 

Fig. 1 The source of the SBP and the determination of the boundary conditions 
 

2.  Buckling deformation modes 

 

To study the deformation modes of the simply supported on four sides SBP, 

this paper analyzes the following three cases: (1) SBP may experience 

coordinated buckling and delamination buckling, without considering the 

coordination action of the plate, as shown in Fig. 2(a). The opposite 

deformation occurs at the deformation area within the partial panels for the 

delamination buckling mode. (2) When considering the coordinated 

deformation between two single plates, the plates at the opposite deformation 

location of the delamination buckling will compress each other. This 

compression causes the bending deformations to cancel each other out, 

forming a straight section, as illustrated in Fig. 2 (b). (3) In practice, the plates 

at the screw area also have the same deflection direction and dimension out of 

plane due to the constraint of screws, as presented in Fig. 2(c). Therefore, it 

can be concluded that two main modes of instability deformation occur, 

namely coordinated buckling and delamination buckling for the SBP simply 

supported on four sides.

 

   

Fig. 2 Deformation modes of the SBP with four edges simply supported. ((a) Without considering the effect of plates; (b) Considering the effect of plates; (c) Considering the effect of 

plates and screws) 

 

 

 
(a) The simplified model of the SBP 

       
(b) Shear slip in the XOZ plane                           (c) Shear slip in the YOZ plane 

Fig. 3 Calculation models of the SBP with four edges simply supported 
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3.  Buckling modes 

 

3.1. Coordinate buckling mode 

 

3.1.1. Calculation model 
A computational model of the CBS for the coordinated buckling 

deformation mode is presented in Fig. 3. The model consists of two identical 

plates connected by self-drilling screws, as shown in Fig. 3(a). A 

micro-element is extracted from the SBP to analyze the buckling deformation 

relationship between the upper and lower plates, as presented in Figs. 3(a)-3(c). 

Additionally, the overall coordinate system and local coordinate systems are 

established in Figs. 3(b)-3(c) to analyze the mechanical behavior between two 

individual plates in detail. Figs. 3(b) and 3(c) demonstrate the mechanical 

behaviors of the SBP during buckling in the XOZ plane and YOZ plane, 

respectively. At the connection interface for the built-up plate, coordinate 

systems x1o1z1 and y1o1z1 are established for follow-up purposes, as shown in 

Fig. 3(b)-3(c). The theoretical derivation can then be developed based on the 

energy method. Therefore, the following two basic assumptions are made for 

the convenience of the mathematical modeling. 

(1) The influence of the size of the screw hole on the stability of the 

built-up plate is disregarded because the diameter of self-drilling screws being 

much smaller than the plate width. 

(2) The constraint of self-drilling screws on the shear deformation of SBP 

can be simplified as shown in Fig. 4. The imaginary shear body is only 

subjected to shear deformation.

 

 

Fig. 4 Mechanism behaviors of the ((a) Micro-element of the SBP; (b) Hypothetical shear body of screws; (c) Shear slip deformation) 

 

3.1.2. The mechanism behaviors of the micro-element 

According to Fig. 3 and the assumption (1), the displacement of any point 

on the upper element is: 

 

t t0 1( / 2)u u z t
x


= − +


                    (1a) 

 

t 0 1( / 2)tv v z t
y


= − +


                     (1b) 

 

where, ut and vt represent the displacement of the upper element along the 

X-axis and the Y-axis directions of the global coordinate system, respectively. 

ω represents the deflection along the Z-axis direction of the global coordinate 

system. z1 represents the displacement in the z1 direction of the follow-up 

coordinate system. 

Similarly, the displacement of any point of the lower elements is: 

 

b b0 1( / 2)u u z t
x


= − −


                     (1c) 

 

b b0 1( / 2)v v z t
y


= − −


                     (1d) 

 

where ub and vb represent the displacement of the lower element along the 

X-axis and the Y-axis directions of the global coordinate system, respectively. 

The strain of each element is then derived from the formulas (1a) to (1d): 
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z t
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
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2
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u

z t
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
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= − −
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2
b0

vb 1 2
( / 2)

v
z t

y y



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= − −

                      (2d) 

 

where, εxt、εxt and εxb、εxb are the strains of any point of the upper element and 

lower element along the X-axis and the Y-axis directions of the global 

coordinate system, respectively. 

Therefore, the normal stress of the upper and lower elements is obtained 

according to Hooke's law [1]: 

 

xt xt yt2
( )

1

E
  


= +

−                      (3a) 

 

yt yt xt2
( )

1

E
  


= +

−                      (3b) 

 

xb xb yb2
( )

1

E
  


= +

−                     (3c) 

 

yb yb xb2
( )

1

E
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
= +

−                     (3d) 
 

where σxt、σyt and σxb、σyb are the normal stresses of the upper and lower body 

elements along the directions of the X-axis and the Y-axis of the global 

coordinate system, respectively. E is the elastic modulus. υ is poisson's ratio. 

 

3.1.3. Shear strain of the micro-element 
The shear strain will be generated under the influence of in-plane shear 

stresses based on the mechanical characteristics of the SBP. The deformation 

diagram is shown in Fig 5. According to the displacement of each point in Fig 

5, the formulas for the shear strain at any point of the upper and lower 

elements can be respectively obtained: 

 

2
t t t0 t0

xyt 12( / 2)
u v u v

z t
y x y x x y




    
= + = + − +
            (4a) 
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2
b b b0 b0

xyb 12( / 2)
u v u v

z t
y x y x x y




    
= + = + − +
           (4b) 

 

According to Hooke's law [1], the shear stresses of the upper and lower 

elements are follows: 

 

xyt xytG =
                            (5a) 

 

xyb xybG =
                           (5b) 

 

where the shear modulus of the material is G=E/2(1+). 

 

 
Fig. 5 Mechanism model of the shear strain 

 

3.1.4. Shear slip of the connecting interface 

In addition to self-deformation, the upper and lower elements also undergo 

shear slip deformation at their connection interfaces based on the geometric 

relationship shown in Fig. 3. The shear slip deformations can be decomposed 

into the shear slip deformation Δx and Δy along the X-axis and Y-axis 

directions, respectively. 

 

1 1b 0 t 0 b0 t0( )x z zu u u u t
x


= =


 = − = − +

              (6a) 

 

1 1y b 0 t 0 b0 t0( )z zv v v v t
y


= =


 = − = − +

                (6b) 
 

where Δx and Δy represent the shear slip deformation of the upper and lower 

elements along the X-axis and Y-axis of the global coordinate system, 

respectively. 

 

3.1.5. Potential energy expression 

According to the principle of energy conservation, the following 

equilibrium equation can be established: 

 

1 2dij ij
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1

2

1 xt xt yt yt xyt xyt 1

xb xb yb yb xyb xyb 2

[( )

[( )

V

V

U dV

dV

     

     

= + + +

+ +




              

(8a)

 

 
2 2L

2

1

( )
2

si

n

x y si

i A

K
U dA

=

=  +  
                      (8b) 

 

1 2

2 2t b
1 2[ ( ) ] [ ( ) ]

2 2
V V

u u
W dV dV

x x x x

     
= + + +

    
           

(8c)

 
 

where U1 represents the sum of the bending potential energy of the two 

individual plates in the SBP; U2 represents the total the potential energy of 

each shear element; W denotes the sum of external potential energy; V1 and V2 

stand for the volumes of the upper plate and the lower plate; Asi represents the 

cross-sectional area of the ith self-drilling screw; σ represents the compressive 

stress; and n represents the number of self-drilling screws. 

The total potential energy expression of the SBP is derived according to 

equations (2)~(8).
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The shear slip influence parameters (ub0, vb0, ut0, vt0) between the two 

single plates and the constraint of self-drilling screws (the generalized stiffness 

KL) are introduced in the total potential energy equation (9) in this paper. This 

can accurately reflect the mechanical characteristics of the SBP. 

 

3.1.6. The critical stress of the coordinated buckling 

The boundary conditions of the built-up plate with the four edges simply 

supported are as follows [1]: 

 

0, , 0, 0x x a y y b = = = = =
                       (10a) 

 

2

0, , 0,2
0x x a y y bD

y


= = = =


− =

                    (10b) 
 

where D represents the bending rigidity of the plate. 

The deflection function [1] that satisfies equations (10a) - (10b) could be 

taken as: 
 

1 sin( )sin( )
m x y

A
a b

 
 =

                   
(11a)

 
 

The displacement function satisfying the mid-plane boundary condition of 

O

Y

X

d
y

dx

a

d c

b

a' b'

d' c'

ut

ut+( ut/ x)dx

vt

vt+( vt/ y)dy



Yan-Chun Li et al.  304 

each single plate is: 

 

2u A
x


=


t0

                            (11b) 

3u A
x


=


b0

                            (11c) 

 

4v A
y


=


t0

                             
(11d)

 

 

5v A
y


=


b0

                             
(11e)

 
 

where m is the number of the buckling half-wave; A1、A2、A3、A4 and A5 are 

undetermined constants. 

Substituting equations (10a)~(11e) into equation (9), and then perform the 

integration. A linear system of equations about 
1 0A  = , 

2 0A  = , 

3 0A  = , 
4 0A  = , 

5 0A  =  is established based on the 

principle of stationary potential energy. The condition for the system to have 

non-zero solutions is that the determinant of the coefficient matrix of this 

equation system is zero. The critical stress for the coordinated buckling of the 

SBP is then determined. 

 

2
2

cr1 2
( )

12(1 )

E t
k

b

 



=

−                      (12) 

 

where k is the stability coefficient of the SBP with four edges simply supported; 

η is the thickness reduction coefficient of the built-up plate reflecting the shear 

slip deformation and the influence of the self-drilling screw constraint. The 

formulas for these two parameters are: 

 

2( )
mb a

k
a mb

= +
                        (13a) 

 

2 2
L 1

2 2
L 1

16 (1 ) /

4 (1 ) /

Et k aK v me

Et k aK v me






+ −
=

+ −                 (13b) 

 

where a refers to the length of the plate. b refers to the width of the plate. m 

represents the half-wavelength of buckling. KL represents the generalized 

stiffness parameter that reflects the constraint effect of self-drilling screws. e1 

refers to the screw spacing along the length of the plate. 

 

3.2. Delamination buckling mode 

 

The boundary conditions and the plate constraints inside the built-up plate 

have a significant influence on the mechanical characteristics of the SBP, as 

illustrated in Figs. 6(a)-6(b).

 

 
(a) End buckling                                      (b) Inside buckling 

Fig. 6 Buckling modes of the delamination buckling 

 
3.2.1. calculation model 

The calculation model is presented to analyze the mechanics 

characteristics of the delamination buckling of the SBP, as presented in Fig. 7.  

The compression of each single plate is considered in both models. The 

angle and out-of-plane deflection are assumed to be close to "0", allowing for 

the further simplification of the complex deformation coordination and 

self-drilling screw constraint as the impact of the "boundary constraint 

condition" on the stability of the single plate.  

 Additionally, a critical half-wavelength is selected as the length of the 

SBP in the calculation model since the buckling behaviors are closely related 

to the buckling wavelength of members [17]. Meanwhile, this section also 

needs to meet the assumptions (1) and (2) outlined in Section 3.1.1 for further 

analysis.

 

  
(a) End buckling                                                   (b) Inside buckling 

Fig. 7 Calculation models of the delamination buckling 

 
3.2.2. Potential energy expression 

The total potential energy of the delamination buckling of the SBP 

consists of two parts: the bending strain energy and the external force potential 

energy: 
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D
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 = + + − −

    





 

 

-

  (14) 

where the flexural rigidity of the plate D=Et3/12(1-2); σ is the compressive 

stress; ω is the deflection along the Z-axis. 

 

3.2.3. The critical stress of the delamination buckling 

(1) End buckling 

The boundary conditions [1] of the model in Fig. 7(a) are as follows: 

 

0, , 0, 0x x y y b = = = = =
                       (15a) 

e1/2 e1/2e1 e1

P P

e1/2 e1/2e1 e1

P P
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2

0, 0,2
0x y y bD

y


= = =


− =

                      (15b) 

0x
x




=


=

                             (15c) 
 

The deflection function [27] that satisfies equations (17a)-(17c) can be 

expressed as: 

 

1

2
[sin( ) 2sin( )]sin( )

x x y
A

b

  


 
= +

            (16) 
 

By substituting the equations (15) and (16) into equation (14), the final 

buckling stress can be determined through simplification as follows: 
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where the stability coefficient k21 is: 
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From this 
2 / 0k   = , it can get the critical half-wavelength as 

follows: 

 

2 1.41cr b b =                          (17c) 

 

According to the influence of the screw spacing, the stability coefficient 

k21 is: 
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(2) Inside buckling 

The boundary conditions [1] of the model in Fig 7(b) are as follows: 

 

0, , 0, 0x x y y b = = = = =
                       (18a) 
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The deflection function [26] that satisfies the equations (18a)-(18c) can be 

expressed as: 

1 sin( )sin( )sin( )
x x y

A
b
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

 
=

                (19) 

 
Submitting the equations (18)-(19) into the equation (14), the inside 

buckling stress can be obtained through simplification as follows: 
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where the stability coefficient k22 is: 
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From this 
22 / 0k   = , it can get the critical half-wavelength as 

follows: 

 

4 16 / 3 1.52cr b b =                        (20c) 

 

According to the influence of the screw spacing, stability coefficient k22 is: 
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Therefore, from equations (17)-(20), the critical stress of the delamination 

buckling of the SBP is: 
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where the stability coefficient k2 is the smaller of k21 and k22, that is: 

 

2 21 22min[ , ]k k k=                         (21b) 

 

3.3. Comparison of coordinated buckling and delamination buckling 

 

It can be observed from the instability mechanism that the members 

always progress towards the most unfavorable failure mode. Therefore, the 

CBS of the SBP should be smaller than the coordinated buckling and the 

delamination buckling, that is： 

 
cr cr1 cr2min[ , ]  =                         (22) 

 

where σcr represents the CBS of the SBP with the four edges simply supported; 

σcr1 denotes the coordinated buckling stress, and σcr2 indicates the delamination 

buckling stress. 

It can be seen that the buckling deformation mode of the built-up plate 

must be determined before calculating the critical stress based on the above 

theoretical analysis. It is convenient for calculating the CBS.  

 Therefore, the thickness reduction coefficient (η) of the SBP in formula 

13(b) should be combined with the stability coefficient (k) of the single plate. 

The stability coefficient of the SBP with four edges can be determined. 
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That is 𝜎cr1 = 𝑘3
𝐸𝜋2

12(1−𝑣2)
(
𝑡

𝑏
)2. Therefore, only k2 and k3 need to be 

compared for the comparison of the CBSes of the coordinated buckling and the 

delamination buckling. Variables in k2 are b and e1. Variables in k3 are b, e1, and 

a. Hence, the relationship among the variables b, e1, a, and k is discussed. The 

three-dimensional relationship of the b/a, e1/a, and k in equations (21b) and (23) 

is illustrated in Fig. 8 to explore the determination of the buckling modes that 

occur in the SBP. It can be seen from Figs 8(a)-8(b) that the three-dimensional 

surface calculated by equation (21b) is always above the three-dimensional 

surface calculated by equation (23). In the case of the self-drilling screw 

arrangement shown in Fig. 3, the delamination buckling represents a higher 

order buckling mode of the coordinated buckling. Therefore, only the 

coordinated buckling is considered in the calculation of the CBS of the SBP. 

Thus, the CBS of the SBP with four edges simply supported is as follows: 
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where k is the stability coefficient of the single plate [1], and η is the thickness 

reduction coefficient of the SBP [5].

 

 

(a) Three-dimensional relationships for b/a, e1/a and k at K= 100N/mm 

 

(b) Three-dimensional relationships for b/a, e1/a and k at K= 90000N/mm 

Fig. 8 Comparisons of the formula (21b) and the formula (23) 

 

4.  Reliability study 

 

The SBP in this paper is extracted from the built-up web in the CFS 

back-to-back built-up column, as presented in Fig. 1. The constraint of the 

flanges on the webs is assumed to be a simply supported edge. The connection 

between the column ends and the end plates through spot welding is also 

considered as a simply supported boundary condition. Therefore, a screw 

built-up plate with simply supported on four sides is set up. This paper not only 

investigates the shear slip and screw constraint during the buckling of the SBP 

but also lays the foundation for subsequent works on CFS built-up columns. 

The CFS built-up columns designed in this paper are divided into two 

series based on the different web heights: the 120 series and the 140 series. 

There are three different screw spacings for each different length of the CFS 

built-up columns. The screw spacing for the 120 series columns is 45mm, 

90mm, and 150mm, respectively. The screw spacing for the 140 series 

columns is 50mm, 100mm, and 150mm, respectively. A total of 18 specimens 

were tested. The measured dimensions of the specimens are listed in Table 1. 

The representative positions of cross-sectional geometric dimensions are 

shown in Fig. 9, while naming rules for the members are illustrated in Fig. 10.

 

            

Fig. 9 Section diagram of specimens                                    Fig. 10 Labeling rule of specimens 

 

 

 

b2 b2

b1 b1

h0

d1

d2
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t
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Table 1 

The measured dimensions of the tested specimens 

Specimens Part 

Measure 

length/mm 
Geometric dimensions/mm Outside diameter/mm Inside diameter/mm 

Ls h0 b1 b2 d1 d2 t R r 

B120-45-A1 
a 367 114 55 54 23 15 1.22 4.0 2.8 

b 366 115.5 54.5 53.5 22.8 14.8 1.18 3.8 2.6 

B120-45-A2 
a 376 115 53 52 22 14 1.21 3.0 1.8 

b 376.5 115 55 54 23 15 1.18 4.0 2.8 

B120-45-A3 
a 369 115 54 53 22.5 14.5 1.21 3.5 2.3 

b 367 116 53 52 22 14 1.19 3.0 1.8 

B120-90-A1 
a 362 115 53 52 22 14 1.22 3.0 1.8 

b 366 115 54 53 22.5 14.5 1.22 3.5 2.3 

B120-90-A2 
a 380 116.5 53.5 52.5 22.3 14.3 1.17 3.3 2.1 

b 376 116 55 54 23 15 1.17 4.0 2.8 

B120-90-A3 
a 372.5 115.5 53.5 52.5 22.3 14.3 1.18 3.3 2.1 

b 370 115.5 53.5 52.5 22.3 14.3 1.17 3.3 2.1 

B120-150-A1 
a 367 116 52 51 21.5 13.5 1.22 2.5 1.3 

b 371.5 115 54 53 22.5 14.5 1.18 3.5 2.3 

B120-150-A2 
a 375 115 54 53 22.5 14.5 1.15 3.5 2.4 

b 374 115 56 55 23.5 15.5 1.17 4.5 3.3 

B120-150-A3 
a 364 114 54 53 22.5 14.5 1.22 3.5 2.3 

b 362 115 54 53 22.5 14.5 1.17 3.5 2.3 

B140-50-A1 
a 420.5 135 51.5 52.5 23.3 19.4 1.18 3.3 2.1 

b 420 135 51 52 23 19.1 1.19 3.0 1.8 

B140-50-A2 
a 420 136 51.5 52.5 23.3 19.4 1.18 3.3 2.1 

b 419.5 135.5 51.5 52.5 23.3 19.4 1.20 3.3 2.1 

B140-50-A3 
a 420 136 51 52 23 19.1 1.18 3.0 1.8 

b 420 134.5 52 53 23.5 19.6 1.20 3.5 2.3 

B140-100-A1 
a 419 135 52.5 53.5 23.8 19.9 1.15 3.8 2.6 

b 420 135 52 53 23.5 19.6 1.15 3.5 2.4 

B140-100-A2 
a 420 135.5 51.5 52.5 23.3 19.4 1.16 3.3 2.3 

b 415 135 52 53 23.5 19.6 1.16 3.5 2.3 

B140-100-A3 
a 420 136 51 52 23 19.1 1.22 3.0 1.8 

b 419.5 135 53 54 24 20.1 1.20 4.0 2.8 

B140-150-A1 
a 420 135 52.5 53.5 23.8 19.9 1.17 3.8 2.6 

b 420 135.5 51.5 52.5 23.3 19.4 1.16 3.3 2.1 

B140-150-A2 
a 418 138 50 51 22.5 18.6 1.17 2.5 1.3 

b 419 136 52 53 23.5 19.6 1.22 3.5 2.3 

B140-150-A3 

 

a 418.5 138 49 50 22 18.1 1.20 2.0 0.8 

b 421 136 50 51 22.5 18.6 1.17 2.5 1.3 

 

The buckling characteristics of the test specimens are presented in Fig. 11. 

The buckling half-wave gradually appears on the specimen webs as the load 

increases. One of the built-up web plates undergoes convex deformation, while 

the other undergoes concave deformation. The coordination buckling 

phenomenon is becoming increasingly prominent under loading. The SBP 

undergoes coordinated buckling. 

Additionally, this formula (24) is verified using data from the experiment, 

as listed in Table 2. The mean and standard deviation (SD) are 1.04 and 0.02, 

respectively. It can be seen that the calculated results are in good agreement 

with the experimental results. Therefore, it indicates that the study in this paper 

is accurate and reliable. In Table 2, σcrt represents the experimental results. σcrc 

represents the calculation results. The critical stress (σcrt) is obtained based on 

the reverse point of strain, as detailed in the reference [4].

 
Table 2 

Comparison of theoretical and experimental results 

Specimens σcrt(N/mm2) σcrc/(N/mm2) σcrc/σcrt 

B120-45-A1 105.74 109.56 1.04 

B120-45-A2 105.63 110.41 1.05 

B120-45-A3 108.08 111.57 1.03 
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B120-90-A1 101.86 104.46 1.03 

B120-90-A2 91.27 92.92 1.02 

B120-90-A3 93.06 95.57 1.03 

B120-150-A1 92.27 97.37 1.06 

B120-150-A2 85.34 87.55 1.03 

B120-150-A3 92.57 95.21 1.03 

B140-50-A1 82.67 85.12 1.03 

B140-50-A2 80.96 84.53 1.04 

B140-50-A3 82.23 85.34 1.04 

B140-100-A1 66.46 70.21 1.06 

B140-100-A2 67.90 71.94 1.06 

B140-100-A3 74.21 77.97 1.05 

B140-150-A1 65.70 69.46 1.06 

B140-150-A2 67.10 73.33 1.09 

B140-150-A3 72.79 73.91 1.02 

Mean 1.04 

SD 0.02 

   

(a) 120 series built-up columns 

   
(b) 140 series built-up columns 

Fig. 11 Buckling characteristics of test specimens 
 

5.  The CBS of the SBP with other boundary conditions 

 

Research has shown that the CBS of the SBP is closely related to the 

boundary conditions. These boundary conditions include the fixed at four sides, 

the two loading edges with simple support and two non-loading edges with 

fixed support, the two loading edges with fixed support, as well as two 

non-loading edges with simple support. The influence of the boundary 

constraint condition on the CBS of the SBP is discussed in this paper. The 

calculation model for the CBSes of the three boundary conditions of the SBP 

still refers to Fig. 1. Depending on the distinct boundary conditions, the 

displacement function [26] of the SBP can be approximated as follows: 

 
(1) Fixed at four sides 

 

2Asin( )sin( )sin( )
m x x y

a a b

  
 =

                (25a) 
 
(2) Two loading edges with simple support and two non-loading edges with 

fixed support 
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a b

 
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                     (25b) 

 
(3) Two loading edges with fixed support and two non-loading edges with 

simple support 
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The CBS of the coordinated buckling of the SBP can be obtained by 

referring to the above theoretical ideas. 
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(1) Fixed at four sides 
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(2) Two loading edges with simple support and two non-loading edges with 

fixed support 
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(3) Two loading edges with fixed support and two non-loading edges with 

simple support 
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It can be seen that the boundary conditions significantly affect the CBSes 

for the SBP. It can be proven that delamination buckling is still a higher order 

buckling mode of coordinated buckling under these boundary conditions. 

Therefore, only the coordinated buckling is considered when calculating the 

CBS of the SBP under the specified boundary conditions. 

 

6.  Conclusions and discussions 

 

The influences of the coordinated buckling and delamination buckling on 

the CBS of the SBP are studied in this paper. The calculation models of the 

CBS are established. A calculation method for calculating the CBS of SBP is 

proposed. Therefore, the main conclusions can be drawn as follows:    

(1) Delamination buckling always represents the higher-order mode of 

coordinated buckling when the SBP buckles. Based on the instability 

mechanism of the plate, it can be observed that the CBS of the SBP always 

consistently shifts towards the most unfavorable mode of development. 

Therefore, only the coordinated buckling should be considered when 

calculating the CBS of the screw built-up plate. 

(2) The shear slip effect and the constraint effect of self-drilling screws are 

considered when deducing the CBS of the SBP. It indicates that the CBS is 

more accurate and closer to the actual situation of the SBP. 

(3) The equation of the CBS for the SBP with four edges simply supported 

is derived and validated. However, the accuracy of the equations under 

different boundary conditions needs further verification. 

(4) In this paper, it is proposed that the generalized stiffness KL (shear 

stiffness) in the equation of the CBS of the SBP represents as the ability to 

prevent the sliding deformation of the plates along the connection interface. 

However, the theoretical analysis of shear stiffness needs to be further studied 

through experiments and theoretical study. 
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