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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

Perfobond strips are integral to composite steel-concrete structures or joints between precast concrete elements. However, 

the diverse boundary conditions and design parameters in various applications have led to numerous empirical and analytical 

methods to investigate their shear behavior. Existing empirical formulas often fail to accurately assess the shear capacity of 

perfobond strip connectors under different conditions. This study addresses this issue by developing a comprehensive 

prediction model for the shear capacity of perfobond strip connectors using a Bayesian -optimized artificial neural network 

(ANN). The proposed model evaluates shear capacity under various conditions, including the presence or absence of 

penetrating rebar in perforations, the use of normal or fiber-reinforced concrete, and various experimental specimen shapes 

applied in different composite structures. By utilizing an extensive dataset of 253 specimens, including 136 previously 

tested by the authors, the model is trained and optimized with a Bayesian optimization algorithm using a Gaussian process 

prior. This approach explores a wide range of hyperparameters to achieve optimal performance. The results show that the 

model excels in predicting the shear capacity of perfobond strip connectors across different design parameters and 

experimental conditions. A subsequent parametric study confirms the model's consistency with the shear-resisting 

mechanism of perfobond strips, underscoring the reliability and effectiveness of the ANN-based model. This model serves 

as a valuable tool for accurately predicting shear capacity in perfobond strip connectors across diverse design scenarios.  
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1.  Introduction 

 

To ensure stress transfer between the steel and concrete components in 

composite structures, it is common to use shear connectors [1]. While headed 

studs have been the most used shear connectors [2, 3], the perfobond strip 

(called Perfobond Lestein in German, abbreviated as PBL) proposed by 

Leonhardt, et al. [4] has been increasingly utilized for various types of 

composite structures due to its unique advantages, such as high stiffness, good 

fatigue resistance [5], simple shape and flexible construction methods. 

Originally developed as a shear connector for composite girders, the PBL 

involves welding a steel plate with multiple perforations onto the top flange of 

the steel girder, as shown in Fig. 1(a). Concrete is then poured onto the concrete 

slab to fill the perforations, providing shear capacity that integrates the steel 

girder and concrete slab. 

Since its development for the first application in composite girder bridge, 

many types of applications of the PBL have been developed. Among them, in 

the corrugated steel web of composite bridges, a PBL is used as shown in Fig. 

1(b) [6-8]. In truss steel web composite bridges, PBL connectors are used at the 

joint between truss steel and concrete members, as shown in Fig. 1(c) [9]. 

Furthermore, in a composite deck designed to reduce the thickness of the bridge 

slabs and improve its fatigue durability, PBL connectors are also commonly 

used, as shown in Fig. 1(d) [10-12]. In these applications, the penetrating rebars 

are often placed in the perforations of the PBL to enhance the shear capacity 

and the stiffness of the shear connectors. In addition, Fig. 1(e) and Fig. 1(f) show 

examples of the PBL application in the rigid connection of the steel girder-

concrete pier [13], and the steel-concrete hybrid pier [14], respectively. 

Furthermore, Fig. 1(g) shows an example of the application of the PBL to the 

joint of a prestressed concrete girder and steel girder in hybrid girder bridges 

with a proven application record in multi-span continuous girder bridges [15, 

16]. Note that, in structures such as those shown in Fig. 1(e)-(g), the PBL is in 

concrete enclosed by a steel shell, so the PBL resists shear forces in the 

condition with the very highly confined condition. 

With the advancements in manufacturing and construction technologies for 

precast concrete components in recent years, developing joints between these 

components has become increasingly important. One perspective-joining 

method that has gained prevalence in recent studies is the utilization of PBL 

connectors. These have been applied to joints between precast reinforced 

concrete slabs [17, 18], precast concrete barriers in bridges [19], and steel 

columns and precast concrete walls in buildings [20], as shown in Fig. 1(h) to 

Fig. 1(k). However, narrow joints are often preferred in these cases, making it 

difficult to arrange the surrounding reinforcement. To address this issue, PBLs 

are often used in conjunction with high-strength steel fiber concrete to ensure 

concrete workability in narrow spaces and prevent brittle joint failure in the 

absence of surrounding reinforcement [21]. 

 

 

Fig. 1 Various applications of the PBLs: (a)  Composite girder bridge; (b) Steel web 

PC bridge, (c) Steel truss web composite bridge; (d) Composite deck, (e) Rigid 

connection between pier and concrete slab, (f) Hybrid pier, (g) Hybrid girder bridge, 

(h) Joint of precast concrete slabs, (i) Joint of precast concrete barriers, (j) Joint between 

steel columns and precast concrete walls, and (k) Joint of precast concrete walls 

 

As previously mentioned, PBL connectors have been utilized in a variety 

of applications, each with different usage conditions. Previous studies [22-28] 

have revealed that the shear capacity of PBL connectors is affected by several 

parameters, including the diameter and the number of perforations, the 

dimensions of perfobond steel plate, the diameter and the yield strength of 

penetrating rebar, the concrete strength, and particularly the confined conditions 

surrounding the PBL. In addition, the confined effect on the connector shear 

capacity depends on various factors, such as the specimen's concrete block 

dimension, specimen shape, support conditions during the loading test, and the 

arrangement of steel hoops or steel shells around the perfobond plate [29, 30]. 

Moreover, using high-strength fiber-reinforced concrete significantly increases 

confined effects in the absence of steel hoops [21]. However, most previous 
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studies offer empirical formulas to assess the shear capacity of PBL connectors 

based on a specific condition, without considering all the above parameters [4, 

22, 23, 30-36]. As a result, these formulas only predict the shear capacity of 

PBL connectors in specific usage cases. Consequently, engineers may find it 

challenging to develop or design new and diverse uses of the PBL, as depicted 

in Fig. 1, using these formulas. Therefore, a more comprehensive prediction 

method is needed that accounts for the influence of a broader range of design 

parameters. 

When a predicted value is influenced by multiple parameters, machine 

learning emerges as a promising method [37]. Recent studies have employed 

this technique to predict the shear capacity of PBL connectors. Allahyari, et al. 

[38] used an artificial neural network (ANN) to construct a prediction model 

based on the results of 90 collected test specimens. Sun, et al. [39] combined 

the backpropagation ANN model, the Genetic algorithm method, and the GSA 

method to develop a prediction model for the shear capacity of PBL connectors 

based on 107 specimens. However, most of the test specimens in these studies 

had a shape that corresponded to the use of the PBL in composite beams (Fig. 

1(a)). This means that two perfobond steel plates were welded on both sides of 

the H-shaped steel, and the concrete slabs were symmetrically poured on both 

sides. As a result, these models fail to account for the shear capacity of PBL 

connectors in scenarios where the surrounding concrete experiences high 

confinement or when PBL is combined with high-strength fiber-reinforced 

concrete. This is because the parameters concerning the shape of the test 

specimens are not readily quantifiable, making it difficult to incorporate them 

into the machine learning models. 

Therefore, this study aims to develop a comprehensive prediction model for 

the shear capacity of PBL connectors using an optimized neural network. While 

most previous studies have only proposed prediction models for the shear 

capacity under specific experimental conditions, including certain shapes and 

sizes of specimens, the novelty of this study lies in developing a model that can 

predict the shear capacity of PBL connectors under extensive experimental 

conditions, such as with or without penetrating rebar in the perforations, using 

normal or fiber-reinforced concrete, and especially for different shapes and 

dimensions of specimens. This allows engineers to use a single model to design 

the perfobond strip under various working conditions, thereby shortening the 

time needed to consider the correlation of each current design formula with the 

working conditions of the designed structure, requiring specialized knowledge 

to avoid errors when selecting inappropriate formulas.  

Initially, a dataset comprising 253 specimens from various studies with 

diverse experimental conditions, including 136 from the authors' tests, was 

compiled, making it the largest dataset used in any study. This dataset was then 

utilized to systematize the shear-resisting mechanisms of perfobond strips, 

providing readers with a more comprehensive understanding of these 

mechanisms across different working conditions. Then, these results are also 

compared with the calculated values of eight existing empirical formulas to 

clarify the correlation between the calculated and experimental values as well 

as the limitations of each formula. To overcome the limitation of the existing 

models, an ANN model is then developed for the prediction of the shear capacity 

of PBL connectors, where a total of 12 input variables are considered in the 

training data. The model is also optimized based on a Gaussian process prior 

through a Bayesian optimization algorithm considering a large range of 

hyperparameters. Since the ANN model has been trained, a comprehensive 

parametric study is finally carried out, where the effectiveness of some primary 

parameters on the shear capacity of PBL connectors is evaluated and discussed 

in detail. 

 

2.  Collection of experimental data from the push-out and pull-out tests 

 

Fig. 1 showcases the versatility of PBLs, widely employed in diverse 

applications. To investigate their shear capacity, researchers have proposed 

various test specimen shapes, as illustrated in Fig. 2. The five commonly used 

types, labeled A, B, C, D, and E, exhibit distinct configurations. While 

parameters like perforation diameter, number, steel plate dimensions, rebar 

diameter and yield strength, and concrete strength are variables across all 

specimens, there are also unique considerations for each type. Differences in the 

effects of confined surrounding concrete and the contribution of the bond 

between the steel plate and concrete contribute to varying shear capacities 

among the different PBL connector specimen types. 

In A and D specimens, the concrete surrounding the PBL is located at the 

center. In contrast, in B and C specimens, the perfobond plate is welded onto a 

base steel plate and positioned at the edge of the concrete block. As a result, the 

confined effect of the surrounding concrete on the connector shear capacity is 

greater in A and D specimens than in B and C specimens, particularly when the 

concrete block is enclosed in a steel shell, as in D specimens [40]. Furthermore, 

the support conditions during the loading test differ across specimens. For A 

and D specimens, the reaction forces appear over the entire bottom surface of 

the concrete block, with the total vector of the reaction force coinciding with 

the loading direction. Conversely, the total reaction force vector of B, C, and E 

specimens is eccentric to the loading direction, inducing a moment on the 

concrete block that may affect the connector shear capacity in these cases [36]. 

Additionally, the interface between the steel plate and concrete is more 

extensive in B, C, and D specimens than in A and E specimens, leading to 

differences in the contribution of the bond between steel plates and concrete to 

the shear capacity of the PBL connector among these specimen types. 

 

 

Fig. 2 Various types of test specimens for the PBL 

 

Due to the variety of factors that affect the shear capacity of PBL 

connectors, most studies have only investigated its capacity within a certain 

range of usage. To construct a comprehensive prediction model that considers 

most of the necessary design parameters, this study collected and constructed a 

dataset of 253 experimental specimens, with a wide range of parameters as 

shown in Table 1 [21, 29, 32, 34-36, 41-53].  

Among these specimens, 136 specimens were collected from the previous 

studies of the authors [21, 29, 34-36], with types A, B, and E, while the 

remaining specimens were collected from other studies. Twelve experimental 

parameters were considered, which is more than any previous model predicting 

the shear capacity of PBL connectors. 

 

Table 1 

Range of experimental parameters 

No. Parameters Notation Range 

1 Specimen type Shape 5 types (A – E) 

2 Perfobond plate thickness 𝑇 (mm) 8-25 

3 Perfobond plate width 𝑎 (mm) 60-300 

4 Perfobond plate length 𝐿 (mm) 100-655 

5 Number of perforations 𝑛 1-5 

6 Perforation diameter  𝐷 (mm) 30-90 

7 Rebar diameter 𝑑 (mm) 0, 10-25 

8 Concrete compressive strength 𝑓𝑐 (MPa) 14-105 

9 Volumetric content of steel fibers 

in concrete  

𝑉𝑓 (%) 0-2.3 

10 Yield strength of penetrating rebar 𝑓𝑦  (MPa) 0, 329-410 

11 Concrete block height 𝐻 (mm) 150-1000 

12 Concrete block width 𝐵 (mm) 150-500 

 

The dataset included 82 specimens that used penetrating rebars in the 

perforations and 172 specimens that did not. In addition, the dataset is composed 

of 5 different specimen shapes, with varying dimensions of the perfobond steel 
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plate, penetrating rebars, and concrete blocks. Notably, the compressive 

strength of the concrete ranged from 14-105 MPa, demonstrating that the dataset 

includes cases where the PBL is used in combination with high-strength 

concrete. 

Fig. 3 displays the distribution of key parameters. It can be observed that 

the data is focused on the range of design parameters commonly used for the 

PBL. Specifically, the data for specimens with perforation diameters is 

uniformly distributed between 30-70mm, while only a few specimens have 

diameters larger than 70mm (Fig. 3(a)). This is because the PBL is typically 

used within the width limit of perfobond steel plates under 150mm, and the 

diameter of the perforation is usually limited to half the width of the perfobond 

steel plate. The diameter of the penetrating rebar is evenly distributed between 

10-25mm in Fig. 3(b), while smaller diameter rebars are not used because they 

do not contribute much to the connector shear capacity. 

  

(a) (b) 

  

(c) (d) 

Fig. 3 Data distribution of main parameters related to shear capacity: (a) Perforation 

diameter, (b) Penetrating rebar diameter, (c) Concrete compressive strength, (d) 

Specimen types 

 

Furthermore, the compressive strength data for concrete is mainly 

concentrated within the range of ordinary concrete, which is 25-60 MPa (Fig. 

3(c)). However, there are also quite a few test specimens using high-strength 

concrete over 60MPa. On the other hand, the amount of data for specimen types 

A, C, and E is higher than that for types B and D. For type D specimens, the 

PBL is enclosed by a steel shell, which corresponds to a scenario where the 

concrete area around it has a very high confined condition, and this is rare in 

practical applications. Type B specimens are also rarely used because the stress 

transmission mechanism of this specimen is relatively similar to that of type C 

specimens. The effects of these parameters on the connector shear capacity, as 

well as the effect of the data distribution on the results of machine learning 

models, will be discussed in subsequent sections of the paper. 

 

3.  Shear resisting mechanism of the PBLs based on previous results 

 

3.1. Affecting mechanism of penetrating rebars 

 

Fig. 4(a), extracted from the authors' previous push-out tests [34, 35], 

presents examples of the relationship between shear force and slip for perfobond 

strips with a perforation diameter of 60 mm, both in cases without penetrating 

rebar (black lines) and with penetrating rebar of 13 mm diameter (red lines). It 

is noticed that other experimental parameters, such as concrete strength and the 

shape and size of the specimens, were kept consistent. The results indicate that 

the presence of penetrating rebar does not significantly influence the behavior 

in the initial stage of shear force, where the slip is below 3 mm; however, it does 

impact the subsequent stages of shear force. Based on this behavior, Fig. 4(b) 

idealizes the typical relationships between shear force and slip for both cases, 

with and without penetrating rebar. 

For a case without penetrating rebar, the shear-resisting mechanism of the 

PBL can be divided into three stages: (1) the linear region, (2) the nonlinear 

region, and (3) the softening region. Fig. 4(c) visually presents stress 

components, revealing key observations: 

In the linear region, PBL force is resisted by the bond at the steel plate-

concrete interface and concrete shear force in the perforation. Initial stiffness is 

high but diminishes in stage (2) when the interface stress exceeds bond strength. 

Variations in specimen behavior arise from the steel plate-concrete interface, 

influencing both initial stiffness and the linear region's endpoint. 

In the nonlinear region, PBL force is chiefly resisted by shear force on two 

concrete surfaces in the perforation. The maximum shear force, defining 

connector shear capacity, occurs upon shear fracture at these surfaces. Factors 

influencing capacity include perforation diameter, concrete strength, steel plate 

thickness, and confined conditions. The shape, size, support conditions, and the 

use of reinforcements or fiber-reinforced concrete also significantly impact 

shear capacity. 

Post-shear fracture in stage (2), concrete confinement around the PBL 

prevents abrupt shear force decline. Greater confinement leads to a gradual 

decrease in shear force. This region's characteristics, often dependent on coarse 

aggregate dispersion in the perforation, are typically modeled as a straight line 

with a negative slope in shear force-slip models. 

 

(a) 

 

(b) 

 

 

(c) (d) 

Fig. 4 Shear force–slip relationship of the PBLs: (a) Examples of the experimental 

shear force–slip relationships of the PBLs, (b) Model for shear force-slip relationship 

of the PBLs, (c) Shear resisting mechanism in the case without penetrating rebar, (d) 

Shear resisting mechanism in the case with penetrating rebar 

 

In the presence of a penetrating rebar in the perforation, the mechanism 

remains similar during stage (1) as previously explained. However, the rebar 

significantly enhances shear capacity in stage (2) and prevents sudden shear 

force reduction after reaching capacity in stage (3). Fig. 4(c) illustrates the 

rebar's action, encompassing the dowel effect from rebar flexural deformation 

and the confined effect in the concrete around the PBL due to the rebar-concrete 

bond. The penetrating rebar's diameter notably impacts shear capacity, while 

the steel plate thickness influences stress distribution and, consequently, the 

rebar's flexural deformation range. Concrete strength also affects this 

deformation. The shear-resisting mechanism with penetrating rebar is more 

intricate than without, with parameters influencing shear capacity mutually. 

Despite this complexity, the rebar arrangement aids in averting brittle failure of 

the shear connector, making it prevalent in PBL applications with low confined 

concrete conditions and convenient rebar arrangement. 

 

3.2. Affecting mechanism of specimen types and block dimensions 

 

Most previous studies have conducted experiments using basic parameters, 
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such as concrete strength, perforation diameter, perfobond steel plate thickness, 

and the diameter of penetrating rebar, on specimens with fixed shapes and 

dimensions. However, even when these experimental parameters are identical, 

the shear capacity of the perfobond strip can still vary. To clarify this, Fig. 5(a) 

[34, 45, 46] illustrates the impact of specimen shape, corresponding to types A, 

B, and C in Fig. 2, while Fig. 5(b) [29] demonstrates the influence of the 

dimensions of the concrete block surrounding the perfobond strip in type A 

specimens. All test samples in these figures were derived from the authors' 

previous tests, with a perforation diameter of 60 mm, perfobond steel plate 

thickness of 12 mm, concrete compressive strength of approximately 30 MPa, 

and no penetrating rebar. It is evident that both the specimen shape and the 

concrete block dimensions significantly affect the shear capacity of the 

perfobond strip. This effect can be explained by the different confinement 

effects exerted by the concrete region surrounding the perfobond strip in the 

various test specimens, as shown in Fig. 5(c). 

When shear force is transmitted to the concrete shear surface within the 

perforation, the uneven surface, caused by randomly distributed aggregates, 

generates a push-out force perpendicular to the perforation shear surface. This 

push-out force causes cracks to propagate into the surrounding concrete around 

the perfobond strip, ultimately reducing the shear capacity. In type A specimens, 

where the perfobond steel plate is centrally located within the concrete region, 

the confinement effect is generated from both sides of the strip, which is 

stronger than the effect generated from one side, as in type B and C specimens. 

This increased confinement effect restricts crack propagation into the 

surrounding concrete caused by the push-out force. Consequently, even with 

identical design parameters for the perfobond strip and concrete strength, the 

shear capacity of type A specimens remains higher than that of types B and C, 

as shown in Fig. 5(a). 

Additionally, the confinement effect increases when the distance from the 

edge of the perfobond steel plate to the outer surface of the concrete block is 

larger. This explains why increasing the width of the concrete block 

significantly enhances the shear capacity of the perfobond strip, as demonstrated 

by the results in Fig. 5(b). 

In summary, in addition to the basic design parameters, such as concrete 

strength, penetrating rebar, and perfobond strip dimensions, the boundary 

conditions and size of the concrete block surrounding the strip also significantly 

impact its shear capacity. This influence mechanism becomes more complex 

when multiple design parameters are varied simultaneously for different 

specimen types. Consequently, most current design formulas can assess the 

shear capacity of the perfobond strip under specific experimental conditions but 

show a low correlation with data when those conditions change, as will be 

discussed in Section 4 of this study. 

 

  
(a) (b) 

 

(c) 

Fig. 5 Affecting mechanism of specimen types and block dimensions: (a) Effects of the 

specimen types on the shear capacity, (b) Effects of concrete block width on the shear 

capacity, (c) Schematics of the affecting mechanism 

 

4.  Evaluation of the existing shear capacity formulas of PBL connectors 

 

4.1. Existing models for predicting the shear capacity of PBL connectors 

 

Accurately predicting the shear capacity of PBL connectors is essential for 

designing shear connectors in composite steel-concrete structures and joints 

between precast concrete components. Consequently, multiple studies have 

focused on developing empirical formulas to predict the shear capacity of PBL 

connectors. Table 2 presents eight formulas proposed in previous studies [4, 22, 

23, 30-36], arranged in chronological order of publication. Most of these 

formulas are based on statistical methods for experimental results, with 

experimental conditions and parameters varying within a specific range. 

Therefore, the range of applicability for each formula is determined based on 

the database used to construct it. However, to assess the applicability of these 

formulas over a broader range, the calculated values are compared with 

experimental results from a wide range of collected datasets, as described in a 

later section. 

 

Table 2 

Existing formulas for predicting the shear capacity of PBL connectors 

1 Leonhardt, et 

al. [4] 

For a case without penetrating rebar: 

𝑉𝑢 = 2.553𝐷2𝑓𝑐  

2 Oguejiofor 

and Hosain 

[22]  

𝑉𝑢 = 4.5ℎ𝑠𝑝𝑇𝑓𝑐 + 0.91𝐴𝑟𝑓𝑦 + 3.31𝐷2√𝑓𝑐 

3 Ahn, et al. 

[23] 
𝑉𝑢 = 3.14ℎ𝑠𝑝𝑇𝑓𝑐 + 1.21𝐴𝑟𝑓𝑦 + 1.895𝜋𝐷2√𝑓𝑐  

4 Chen [30] 𝑉𝑢 = 1.38(𝐷2 − 𝑑𝑟
2)𝑓𝑐 + 1.24𝑑𝑟

2𝑓𝑦 

5 JSCE [31] For a case without penetrating rebar: 

𝑉𝑢 = 1.6𝐷2𝑓𝑐   

For a case with penetrating rebar: 

𝑉𝑢 = 1.85𝐴 − 26.1 × 103 

In which,  

𝐴 =
𝜋(𝐷2 − 𝑑𝑟

2)

4
𝑓𝑐 +

𝜋𝑑𝑟
2

4
𝑓𝑡 

6 He, et al. [32] 𝑉𝑢 = 𝜏𝑏𝐴𝑏 + 1.06𝐴𝑐𝑓𝑐 + 2.09𝐴𝑟𝑓𝑦  

In which,  

𝜏𝑏 = −0.022𝑓𝑐 + 0.306√𝑓𝑐 − 0.573 

7 Zheng, et al. 

[33] 
𝑉𝑢 = 1.76(𝐴 − 𝐴𝑟)𝑓𝑐 + 1.58𝐴𝑟𝑓𝑦 

8 Nakajima 

and Nguyen 

[34-36] 

For a case without penetrating rebar and using normal 

concrete: 

𝑉𝑢 = 0.15𝜅1𝐴𝑓𝑐
0.65𝐴𝑠𝑏

0.43𝑇−0.5  

For the case without penetrating rebar and using high-strength 

steel fiber concrete: 

𝑉𝑢 = 𝜅1𝜅2𝜅3𝐴𝑓𝑐
0.65 

In which,  

𝜅1  = 1.0 or 0.78, 𝜅2  =  22𝑉𝑓  +  0.48 , 𝜅3  =  0.22𝑉𝑏
0.24 

for push-out force, and 𝜅3  =  0.17𝑉𝑏
0.24 for pull-out force 

For a case with penetrating rebar and using normal concrete: 

𝑉𝑢 = 𝑉𝑐 + 𝑉𝑟  

In which,  

𝑉𝑐 = 0.15𝜂𝜅1(𝐴 − 𝐴𝑟)𝑓𝑐
0.65𝐴𝑠𝑏

0.43𝑇−0.5 

𝑉𝑟 = 0.84𝑑𝑟𝑓𝑦𝐷0.1𝑇0.8 

𝜂 = 6.9𝑑𝑟
0.4𝐷−0.7 

Notes: 𝑉𝑢: Shear capacity per one perforation (N); 𝐷: Perforation diameter (mm); 

𝑓𝑐: Concrete compressive strength (MPa); ℎ𝑠𝑝: Width of perfobond steel plate (mm); 

𝑇: Thickness of perfobond steel plate (mm); 𝐴𝑟: Cross section of penetrating rebar 

(mm2); 𝑓𝑦: Yield strength of penetrating rebar (MPa); 𝑑𝑟: Penetrating rebar diameter 

(mm); 𝜏𝑏 : Bond strength between steel plate and concrete (MPa); 𝐴𝑏 : Steel plate-

concrete interface area (mm2); 𝐴𝑐: Area of concrete part in perforation (mm2); 𝐴𝑠𝑏: 

Side area of the concrete block surrounding the PBL (mm2);  𝜅1: Influence coefficient 

of the test specimen’s shape; 𝜅2: Influence coefficient of the volume content inside the 

concrete mixture; 𝜅3: Influence coefficient of the concrete block size; 𝜂:  Interaction 

coefficient between concrete and penetrating rebar 
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Table 2 reveals that the coefficients in the formulas vary, but most formulas 

share a relatively similar form. The formula of Leonhardt, et al. [4], which 

introduced the PBL concept, has the simplest form as it only considers the 

effects of concrete strength and perforation diameter. This is because Leonhardt 

et al. initially developed the PBL concept for composite beams and penetrating 

rebar was not arranged in the perforation. Their formula is based on the results 

of the type C specimen test. However, due to its simplicity and ease of use for 

engineers, the committee on hybrid structures of the Japan Society of Civil 

Engineers [31] has adjusted the coefficients based on this form and incorporated 

them into the corresponding standard to predict the shear capacity of PBL 

connectors without penetrating rebar. 

Oguejiofor and Hosain [22] proposed a method of using PBLs with 

penetrating rebar and intermittently welded perfobond steel plates on the steel 

girder flange, leading to three components that contribute to the connector shear 

capacity. These components include the bearing force at the perfobond steel 

plate's edge, the axial action of the penetrating rebar, and the concrete's shear 

force in the perforation. The contribution of each component is indicated by 

corresponding coefficients. Ahn, et al. [23] also developed a formula based on 

this concept but with coefficients adjusted based on expanded experimental data. 

It should be noted that the bearing force at the PBL edge is not considered in 

the calculation of the connector shear capacity for the specimens collected in 

this study. This is because a gap is established under the perfobond steel plate 

in all test specimens. Chen [30], He, et al. [32], and Zheng, et al. [33] also have 

similar forms but do not account for the end-bearing force at the perfobond 

plate's edge. Among them, the formula developed by He, et al. [32] considers 

the bond stress between the perfobond steel plate and concrete. Nakajima and 

Nguyen's formulas [34-36] have a basic structure that includes the concrete 

shear force in the perforation and the penetrating rebar's contribution. However, 

each component is more complex and considers more parameters than the other 

formulas, which are formulated based on an exponential function to assess the 

mutual influences of the parameters. 

 

4.2. Statistical analysis of the correlation between empirical formulas and 

experimental data 

 

Figs. 6(a)-(h) depict the correlation between the experimental shear 

capacity (target value) and the calculated values (output value) for each of the 

eight formulas presented in Table 2. The regression line is represented by the 

blue line in each figure, while the line 𝑦 = 𝑥 is indicated by the black dotted 

line, signifying the point at which the calculated value equals the experimental 

value. The vertical axis of each figure displays the formula of the regression 

line. Fig. 7 presents the statistical analysis results for the data in Fig. 6, with the 

Min, Max, and Mean ratios indicated by the minus sign for each formula. The 

standard deviation of the data is represented by the height of the blue rectangle, 

while the red plus sign denotes whiskers, signifying the data points that fall 

outside the trend determined by the regression analysis. 

Figs. 6(a)-(c) and Fig. 7 demonstrate that the formula of Leonhardt, et al. 

[4] overestimates the experimental shear capacity, whereas the formulas of 

Oguejiofor and Hosain [22] and Ahn, et al. [23] tend to underestimate the 

experimental values. The formula of Leonhardt, et al. [4] considers only the 

effects of perforation diameter and concrete strength and is based on a limited 

experimental dataset, which explains the discrepancy with the results of a more 

extensive dataset. In contrast, the formulas of Oguejiofor and Hosain [22], as 

well as Ahn, et al. [23], were developed based on specimens that include the 

end bearing force at the perfobond steel plate's edge. However, the calculated 

values in Figs. 6(b) and 6(c) do not account for this contribution since the test 

specimens used in this study have a gap established under the perfobond steel 

plate. Consequently, the resisting mechanism of the specimens in the database 

used to formulate the formulas of Oguejiofor and Hosain [22], as well as Ahn, 

et al. [23], differs from that of the specimens collected in this study, leading to 

a significant difference between the calculated and experimental values. 

Fig. 7 indicates that the remaining formulas have average values in the 

range of 0.75 to 1.1, while Figs. 6(d) to 6(h) reveal that the correlation 

coefficients differ among the formulas. The formula proposed by Chen [30] 

exhibits the lowest average ratio due to the limited dataset used to develop their 

formula. Conversely, the formula proposed by JSCE demonstrates a high 

average ratio and the most skewed data, as it only considers the basic parameters 

and reference structure of the Leonhardt et al. formula, leading to a low 

correlation with the large experimental dataset that accounts for many complex 

influencing factors. The average values corresponding to the recently proposed 

formulas by He, et al. [32], Zheng, et al. [33], and Nakajima and Nguyen range 

from 0.8 to 1.0, as they are based on larger experimental datasets than previous 

formulas. However, the standard deviation of the data using He et al.’s formula 

is relatively high because of the bond strength between the steel plate and 

concrete, which has a large experimental error. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 6 Statistical analysis of the shear capacity ratio from existing formulas and 

experimental data: (a) Leonhardt et al., (b) Oguejiofor and Hosain, (c) Ahn et al., (d) 

Chen, (e) JSCE, (f) He et al., (g) Zheng et al., and (h) Nakajima and Nguyen. 

 

On the other hand, Nakajima and Nguyen’s formula indicates the best 

correlation with the experimental data based on all statistical parameters, such 

as the average value, correlation coefficient, standard deviation, and the number 

of skewed specimens, as it is based on a large database, considers many 

influencing factors by analyzing the PBL connector mechanism, and is suitable 

for the parameters of the connector within the common range. Nevertheless, the 

correlation coefficient in Fig. 6(h) is only 0.900, and there are still many skewed 

data points, especially those in the experimental shear capacity range above 300 

kN and below 80 kN. This may be attributed to the fact that Nakajima and 

Nguyen’s formula focuses only on the parameters of the connector within the 

common range, without considering cases where the perforation is too small or 

too large. 

In conclusion, the correlation of most current experimental formulas with 

the experimental dataset is not high, primarily due to (i) the limited dataset used 

in the statistical analysis to develop the formulas and (ii) the difficulty in 
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considering all the influencing factors based on conventional statistical methods. 

Hence, machine learning may provide a feasible solution when the influencing 

factors are complex, and the experimental dataset is large enough. 

 

 

5.  Optimization of neural network model 

 

5.1. ANN training data and feature selection 

 

In the literature, various machine-learning models have been employed to 

tackle regression problems [40]. In this study, an ANN model is utilized for 

prediction purposes. The ANN architecture, as illustrated in Fig. 8, includes an 

input layer, one or more hidden layers, and an output layer, with fully connected 

neurons. The input layer is comprised of n neurons, which correspond to the 

input variables of the training data. The hidden layers can contain one or 

multiple layers, and each layer consists of several neurons. The selection of the 

number of hidden layers and neurons per layer is based on the complexity of the 

problem and performance evaluation. The output layer is made up of one or 

more neurons, with each neuron representing a predicted output. During the 

training process, the ANN adjusts the weights of the connections between 

neurons to minimize the difference between the predicted outputs and actual 

outputs of the training data. 

The ANN model excels in capturing complex and nonlinear relationships 

between input variables and outputs. Prediction accuracy depends on the quality 

and quantity of training data, as well as model parameter selection. A well-

trained and optimized ANN model can offer precise and robust predictions for 

regression problems. 

 

 

Fig. 8 Example of ANN architecture 

 

This study uses 253 test results as training data, with 12 input variables and 

connector shear capacity as the output. Table 1 details the parameters and their 

ranges, with only specimen type labeled; other parameters are numeric. The data 

is split into a training set (85% or 215 data) and a test set (15% or 38 data). 

While the parameters in Table 1 are more comprehensive than in prior studies, 

some are not included. The yield or tensile strength of the steel plate is omitted, 

as failures primarily involve concrete shear or rebar fracture. Additionally, the 

reinforcement arrangement in the concrete block, a crucial parameter, varies 

widely in applications, complicating data collection. Furthermore, prior 

research by the authors has shown that this factor primarily contributes to 

preventing brittle failure rather than directly enhancing shear resistance [29, 34]. 

Hence, this parameter has been omitted. The influence of frictional force 

between the perfobond steel plate and concrete can be represented by 

parameters such as perfobond plate width and length. However, since the effect 

of frictional force between the base steel plate and concrete only appears in type 

B, C, and D specimens, and not in type A and E specimens, thereby it is not 

included. For type D specimens, this effect can be indirectly considered through 

the width and height of the concrete block. For type B and C specimens, as the 

width of the base plate varies minimally among specimens with the same type, 

the differences in the frictional force between the base steel plate and concrete 

among the specimens can also be indirectly assessed through the height of the 

concrete block. Therefore, the parameters related to the dimensions of the base 

steel plate are not listed. 

 

 

Fig. 9 Feature important scores sorted by the MRMR algorithm 

 

The feature selection is first performed to identify the important score of 

each input feature on the response variable. The MRMR algorithm is used [54]. 

This algorithm seeks to identify an optimal feature set that is both maximally 

dissimilar and mutually exclusive, and that can effectively represent the 

response variable. The primary objective of the MRMR algorithm is to identify 

an optimal feature set 𝑆 that maximizes the relevance of 𝑆 to the response 

variable 𝑦 while minimizing the redundancy of 𝑆. These two objectives are 

quantified using mutual information 𝐼. The optimal set 𝑆 can be obtained by 

considering all 2|𝛺| possible feature combinations, where 𝛺 is the entire set 

of available features. However, the MRMR algorithm uses a forward addition 

scheme to rank features, which reduces the computation cost to 𝑂(|𝛺| · |𝑆|) by 

utilizing mutual information quotient (MIQ) values, 

 

𝑀𝐼𝑄𝑥 =
𝐼(𝑥,𝑦)

1

|𝑆|
∑ 𝐼(𝑥,𝑧)𝑧∈𝑆

, 
(1) 

 

where the numerator and denominator are the relevance and redundancy of a 

feature, respectively, and |𝑆| is the number of features in 𝑆. 

The function can be used to rank all features in 𝛺. The computation cost 

for this function is 𝑂(|𝛺|2), and it uses a heuristic algorithm to quantify the 

importance of each feature, returning a score that indicates the significance of 

each predictor. 

MRMR analysis findings in Fig. 9 reveal the influence of 12 input 

parameters on connector shear capacity. Beyond parameters like perforation 

diameter and concrete strength, those linked to the confined condition around 

the PBL (e.g., block width or specimen type) significantly affect shear capacity. 

Neglecting this can lead to deviations in calculated values. Dimensions of the 

perfobond steel plate, like thickness and width, exert substantial influence due 

to the bond with concrete. Steel plate thickness impacts stress distribution and 

shear surface formation, influencing capacity. Parameters related to specimen 

height have a lower impact, suggesting that multiple perforations on the steel 

plate minimally affect shear capacity per perforation. 

 

5.2. Optimizable neural network 

 

During the process of training a machine learning model or neural network, 

a crucial step is selecting values for parameters such as learning rate, epochs, 

number of layers, and hidden units. The selection of reasonable parameters often 

relies on experience, and for each set of parameters, we must train the model, 

observe the results achieved, evaluate the results, adjust the parameters, and 

repeat the process. To automate this process, search algorithms such as Grid 

Search or Random Search are used [55]. However, these algorithms are only 

effective with a small number of parameters because the search space increases 

rapidly with many parameters, making the search time-consuming. Bayesian 

optimization is an algorithm that optimizes effectively for objective functions 

with large evaluation costs (such as training a neural network) based on the 

Bayesian theorem [56]. Bayesian optimization significantly reduces the number 

of trials compared to Grid Search or Random Search [56]. The following is an 

algorithm for Bayesian optimization with a Gaussian process prior: 

 

Fig. 7 Descriptive statistics of the ratio between the existing models and experimental 

data 
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Define the objective function 𝑓(𝑥) and specify the prior distribution over 

the objective function. This is typically done by assuming a Gaussian process 

prior over 𝑓(𝑥). 

Define an acquisition function 𝛼(𝑥) that measures the utility of sampling 

𝑥 . Popular acquisition functions include upper confidence bound, expected 

improvement, and probability of improvement. 

For 𝑡 =  1, 2, . . . , 𝑡𝑚𝑎𝑥 (𝑡𝑚𝑎𝑥 is the maximum number of iterations): 

Fit a Gaussian process model to the available data (𝑥, 𝑦), where 𝑦 =
 𝑓(𝑥)  +  𝑛𝑜𝑖𝑠𝑒. The model provides a posterior distribution over 𝑓(𝑥) given 

the observed data. 

Select the next point to sample by maximizing the acquisition function: 

𝑥𝑡  =  𝑎𝑟𝑔𝑚𝑎𝑥 𝛼(𝑥|𝐷𝑡−1), where 𝐷𝑡−1 is the data up to time 𝑡 − 1. 

Sample the objective function at 𝑥𝑡: 𝑦𝑡  =  𝑓(𝑥𝑡) +  𝑛𝑜𝑖𝑠𝑒. 

Add the new data point (𝑥𝑡, 𝑦𝑡) to the observed data. 

Finally, return the best-observed value of 𝑓(𝑥). 

 

Table 3 

Optimization analysis result 

Hyperparameter Value 

Number of hidden layers 2 

Activation function Relu 

Layer biases initializer Ones 

Layer weights initializer He 

Regularization strength  2.549 

Number of neurons per hidden layers 1-2 210, 58 

 

  

(a) (b) 

Fig. 10 Regression plot of the calculated and actual values 

 

To optimize the ANN model, a range of hyperparameters needs to be 

defined. In this study, the range of hyperparameters for the ANN model is 

introduced including the number of hidden layers (1, 2, and 3), the first, second-, 

and third-layer size (1-253 neurons), the activation function (ReLU, Tanh, 

Sigmoid), the layer biases initializer (Zeros, Ones), layer weights initializer 

(Glorot, He) [57, 58]  and the regulation strength (1𝑒−5/𝑛, 1𝑒5/𝑛), 𝑛 is the 

number of observations. The iteration limit is fixed to 1000, and the train neural 

network regression model is adopted; this model is used to train a feedforward, 

fully connected neural network. The number of iterations of the Bayesian 

optimization is set as 100, and the acquisition function is selected as the 

expected improvement. For the validation, 5-fold cross-validation is used [59]. 

The result of the Bayesian optimization as the optimal hyperparameter for the 

ANN model is shown in Table 3, which comprises an optimal ANN model for 

the prediction. 

 

Fig. 11 Descriptive statistics of true and predicted values for specimen types 

In addition to the validation using the 5-fold cross-validation on the training 

set, a separate test set of 15% data is used to test the model performance. The 

regression plots of the predicted and actual values from the 5-fold cross-

validation and the test set are shown in Fig. 10 and an example of descriptive 

statistics of true and predicted values for specimen types is shown in Fig. 11. 

As observed from the figures, 𝑅2 values are 0.924 and 0.948 for both the cross-

validation and the separate test set, respectively, remarkably higher than that of 

the existing models previously mentioned. This demonstrates the high 

performance of the ANN model in predicting the shear capacity of PBL 

connectors in steel-concrete composite structures. 

 

6.  Effectiveness of primarily design parameters on shear capacity 

 

The influence of key parameters on connector shear capacity was 

investigated using the developed model in Section 4. Figs. 12(a) to 12(e) present 

the impact of perforation diameter, penetrating rebar diameter, concrete 

compressive strength, perfobond plate thickness, and concrete block width. 

Type D specimens were excluded due to their limited quantity. 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 12 ANN model-based parametric study results in terms of (a) Perforation 

diameter (b) Rebar diameter, (c) Concrete compressive strength, (d) PBL thickness, 

and (e) Block width 

 

Results in Fig. 12 show that, with identical design parameters, type A has 

the highest shear capacity, followed by types B and C, with type E having the 

lowest. This aligns with load-bearing mechanisms discussed in Sections 2 and 

3.1, emphasizing the importance of selecting an appropriate specimen type 

matching real conditions for accurate shear capacity calculations in design. 

Observations in Fig. 12(a) indicate a non-linear increase in shear capacity 

with perforation diameter, suggesting expression in terms of the perforation area 

or square of the diameter, common in empirical formulas (Table 2). Conversely, 

the relationship between shear capacity and penetrating rebar diameter is nearly 

linear across all specimen types. Thus, it's recommended to express this 

relationship in terms of the diameter, reflecting the dowel action's dependence 

on rebar flexural deformation and diameter, as demonstrated in Nakajima and 

Nguyen's proposed formula. 

Fig. 12(c) shows a nearly linear relationship between shear capacity and 

concrete compressive strength, consistent across normal-strength and high-

strength concrete. Empirical formulas in Table 2 use various approaches to 

represent this effect, such as square root or exponential functions. However, the 

combined influence of concrete compressive strength on shear strength in the 

perforation and the confined effect on surrounding concrete is evaluated through 

its actual value. 
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Equations (1) to (7) in Table 2 overlook the impact of perfobond steel plate 

thickness on the shear force in the perforation and the contribution of the 

penetrating rebar. Conversely, Nakajima and Nguyen's formula highlights that 

increasing steel plate thickness reduces shear force but enhances the dowel 

effect. The observed trend in Fig. 12(d) aligns with Nakajima and Nguyen's 

study and emphasizes the importance of steel plate thickness. 

Concrete block width consistently influences confined effects around the 

PBL, enhancing shear stress on two shear surfaces. This effect is neglected in 

Equations (1) to (7) but considered in Equation (8), making Nakajima and 

Nguyen's formula more correlated with the experimental data. 

In summary, the parametric study aligns with the shear-resisting 

mechanism explained in Sections 2 and 3.1, confirming the reliability of the 

proposed machine learning-based model for a large experimental dataset, both 

statistically and in terms of the PBL's shear-resisting mechanism. 

 

7.  Conclusions 

 

This study aims to develop a comprehensive prediction model for the shear 

capacity of PBL connectors using an optimized neural network. The research 

conducted a thorough investigation and meticulous data collection to create a 

dataset of 253 specimens from various sources, including 136 contributed by 

the authors, which is more than any other previous study. Based on this 

extensive dataset, the research systematically examined the shear-resisting 

mechanism of the perfobond strip and critically analyzed eight existing 

empirical formulas. This helps engineers gain a more comprehensive and deeper 

understanding of the shear resistance mechanism of the perfobond strip, as well 

as the strengths and limitations of the existing design formulas. The comparative 

analysis revealed inherent limitations in existing formulas, attributing their 

diminished correlation with experimental values to the challenges posed by a 

limited dataset and the complexity of incorporating all influencing factors 

through conventional statistical methods. 

While most previous studies have only proposed prediction models for the 

shear capacity under specific experimental conditions, including certain shapes 

and sizes of the specimens, the novelty of this study lies in developing a model 

that can predict the shear capacity of PBL connectors under more 

comprehensive working conditions, such as with or without penetrating rebar in 

the perforations, using normal or fiber-reinforced concrete, and especially for 

different shapes and dimensions of test specimens. To achieve this objective, a 

feature selection analysis identified 12 input parameters and found that 

perforation diameter, block width, specimen type, and PBL thickness are 

significant contributors to the shear capacity of PBL connectors. Employing the 

Bayesian optimization algorithm, an optimized ANN model with a two-layer 

architecture demonstrated exceptional predictive performance, attaining an 

impressive 𝑅2 value of 0.949 on a separate test set. This result demonstrates 

superiority over most existing prediction models, especially since this model 

can also predict the shear capacity of the perfobond strip with a more 

comprehensive range of applications. 

The parametric study results consistently aligned with the shear-resisting 

mechanism of PBL, reinforcing the credibility and applicability of the proposed 

machine learning-based model across a broad experimental dataset. In light of 

these findings, this study not only advances the understanding of PBL connector 

behavior but also contributes a comprehensive prediction model with practical 

implications. This model stands poised for integration into engineering practices, 

offering a valuable tool for optimizing the design and analysis of concrete 

structures. 
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