Advanced Steel Construction

Vol. 18, No. 1, pp. 465-478 (2022)


 EFFECT OF RANDOM PRE-STRESSED FRICTION LOSS ON THE

PERFORMANCE OF A SUSPEN-DOME STRUCTURE

 

Ren-Zhang Yan 1, 2, *, Mei-Hao Zhu 3, Ting Liu 1, 2, Jia-Qi Liu 1, 2 and Zhi-Hua Chen 4

1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3 Design and Development Department, China Construction Science and Technology Co., Ltd. Sichuan Branch, Chengdu 610213, China

4 School of Civil Engineering, Tianjin University, Tianjin 300072, China

*(Corresponding author: E-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.)

Received: 17 October 2020; Revised: 27 May 2021; Accepted: 27 May 2021

 

DOI:10.18057/IJASC.2022.18.1.5

 

View Article   Export Citation: Plain Text | RIS | Endnote

ABSTRACT

The key to the high-efficiency performance of the suspen-dome structure is to apply the pre-stressed design value to the structure accurately. However, engineering practice has found that the use of tensioning hoop cables to apply the pre-stress will produce noticeable pre-stressed friction loss (PFL), which significantly affects the safety performance of the structure. In this paper, based on a 1:10 scaled-down experiment model of a suspen-dome structure with rolling cable-strut joint installed, the random PFL (RPFL) effect of the suspen-dome on structure performance was analyzed through a probability statistics theory. First, aiming at the unequal tensioning force at both sides of the tensioned hoop cable during the tensioning process, a pre-stressed force calculation method is proposed that considers the unequal tensioning control force and RPFL at all cable–strut joints, and the reliability of this method is verified through a tension test. Then, based on the cable-joint tension test carried out in the early stage of the research group, a random mathematical model of the friction coefficient (FC) at the rolling cable–strut joint is established. And then, the cable force calculation method is used to establish the random finite element model, and independent and random changes in the FC at each rolling cable–strut joint can be considered. Subsequently, the Monte Carlo method is used to calculate the random mathematical characteristics of the mechanical performance parameters such as the member stress and joint deformation, and the obtained results are verified through a static loading experiment. In addition, to investigate the effect of random defects on structural stability, other random defects, such as the initial curvature and installation deviation, were continuously introduce based on the random finite element model. As such, we could obtain the law of the effect of multi-defect random variation coupling on the structure’s ultimate bearing capacity.

 

KEYWORDS

Suspen-dome, Friction coefficient, Ultimate bearing capacity


REFERENCES

[1] J. G. Cai, Y. Q. Liu, J. Feng, et al., “Nonlinear stability analysis of a radially retractable suspen-dome”, Advanced Steel Construction, Vol. 13, No. 2, pp. 117-131, 2017.

[2] M. Kawaguchi, M. Abe, and T. Ikuo, “Design, tests and realization of ‘suspend-dome’ system”, Journal of the International Association for Shell and Spatial Structures, Vol. 40, No. 3, pp. 179-192, 1999.

[3] H. N. Li, C. L. Yuan, L. Ren et al., “Structural health-monitoring system for roof structure of the Dalian Gymnasium”, Advances in Structural Engineering, Vol. 22, No. 7, pp. 1579-1590, 2019.

[4] Z. H. Chen, “Cable-supported Structure system”, Science Press, Beijing, China, 2013.

[5] Z. H. Chen, R. Z. Yan, X. D. Wang et al., “Experimental researches of a suspen-dome structure with rolling cable-ctrut joints”, Advanced Steel Construction, Vol. 11, No. 1, pp. 15-38, 2015.

[6] R. Montuori and R. E. Skelton, “Globally stable tensegrity compressive structures for arbitrary complexity”, Composite Structures, Vol. 179, pp. 682-694, 2017.

[7] S. D. Guest, “The stiffness of tensegrity structures”, IMA Journal of Applied Mathematics, Vol. 76, No. 1, pp. 57-66, 2010.

[8] A. L. Zhang, X. C. Liu, D. M. Wang et al., “Static experimental study on the model of the suspend-dome of the Badminton Gymnasium for 2008 Olympic Games”, Journal of Building Structures, Vol. 28, No. 6, pp. 58-67, 2007.

[9] G. F. Zhang, S. L. Dong, X. Zhuo et al., “Experimental research on sliding cable prestress losses of suspen-dome structures”, Spatial Structures, Vol. 26, No. 4, pp. 36-41, 2020.

[10] H. B. Liu and Z. H. Chen, “Structural behavior of the suspen-dome structures and the cable dome structures with sliding cable joints”, Structural Engineering and Mechanics, Vol. 43, No. 1, pp. 53-70, 2012.

[11] H. B. Liu, Q. H. Han, Z. H. Chen et al., “Precision control method for the pre-stressing construction of suspen-dome structures”, Advanced Steel Construction, Vol. 10, No. 4, pp. 404-425, 2014.

[12] Z. W. Zhao, B. Liang, R. Z. Yan et al., “A novel numerical method for considering friction during pre-stressing construction of cable-supported structures”, International Journal of Steel Structures, Vol. 18, No. 5, pp. 1699-1709, 2018.

[13] Y. Chen, Q. Sun, and J. Feng, “Improved form-finding of tensegrity structures using blocks of symmetry-adapted force density matrix”, Journal of Structural Engineering, Vol. 144, No. 10, pp. 04018174.1-04018174.13, 2018.

[14] J. Y. Zhang and M. Ohsaki, “Force identification of prestressed pin-jointed structures”, Computers & Structures, Vol. 89, No. 23, pp. 2361-2368, 2011.

[15] M. Ohsaki and J. Y. Zhang, “Nonlinear programming approach to form-finding and folding analysis of tensegrity structures using fictitious material properties”, International Journal of Solids and Structures, Vol. 69-70, pp. 1-10, 2015.

[16] H. J. Liu, L. F. Yang, Y. L. Li et al., “Geometrically nonlinear analysis on a double controlled form finding method considering construction process of suspen-domes”, Advanced Materials Research, Vol. 904, pp. 524-527, 2014.

[17] J. M. Guo and D. Zhou, “Pretension simulation and experiment of a negative Gaussian curvature cable dome”, Engineering Structures, Vol. 127, pp. 737-747, 2016.

[18] Y. Chen, P. Sareh, J. Feng et al., “A computational method for automated detection of engineering structures with cyclic symmetries”, Computers & Structures, Vol. 191, pp. 153-164, 2017.

[19] Y. Chen, J. Feng, and Q. Sun, “Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry”, International Journal of Solids and Structures, Vol. 139, pp. 1-14, 2018.

[20] Y. Chen, J. Feng, R. Ma et al., “Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable-strut structures”, Journal of Structural Engineering, Vol. 141, No. 10, pp. 04014240.1-04014240.11, 2014.

[21] Y. Chen, J. Feng, H. Lv et al., “Symmetry representations and elastic redundancy for members of tensegrity structures”, Composite Structures, Vol. 203, pp. 672-680, 2018.

[22] M. Elhoseny, A. Tharwat, A. E. Hassanien et al., “Bezier curve based path planning in a dynamic field using modified genetic algorithm”, Journal of Computational Science, Vol. 8, No. 4, pp. 1-41, 2017.

[23] S. Z. Weng and P. Huang, “Principles of Tribology”, Tsinghua University Press, Beijing, China, 2002.

[24] S. V. Shil’ko, D. A. Chernous, T. V. Ryabchenko et al., “Estimation of the friction coefficient of a nanostructured composite coating”, Mechanics of Composite Materials, Vol. 53, No. 5, pp. 579-588, 2017.

[25] D. Prayogo and Y. T. T. Susanto, “Optimizing the prediction accuracy of friction capacity of driven piles in cohesive soil using a novel self-tuning least squares support vector machine”, Advances in Civil Engineering, Vol. 2018, 6490169.1-6490169.9, 2018.

[26] Y. Chen, J. Feng, P. Sheng et al., “Anti-sliding performance of cable clips of inner concave cable arches in the New Guangzhou Railway Station”, Journal of Building Structures, Vol. 34, No. 5, pp. 27-32, 2013.

[27] S. Wang, G. J. Zhang, A. L. Zhang et al., “The prestress loss analysis of cable-strut Joint of the Badminton Gymnasium for 2008 Olympic Game”, Journal of Building Structures, Vol. 28, No. 6, pp. 39-44, 2007.

[28] J. Qin, Z. Q. Wang, R. Zhang et al., “Study on prestress construction monitoring of Badminton Gymnasium for 2008 Olympic Games”, Journal of Building Structures, Vol. 28, No. 6, pp. 83-91, 2007.

[29] X. C. Liu, A. L. Zhang, and W. L. Fu, “Cable tension preslack method construction simulation and engineering application for a prestressed suspended dome”, Advances in Materials Science and Engineering, Vol. 2015, No. 2015, pp. 1-17, 2015.

[30] Z. X. Guo, Y. Q. Wang, B. Luo et al., “Prestressed cable construction of large-span suspend-dome in Ji’nan Olympic Center Gymnasium”, Construction Technology, Vol. 37, No. 5, pp. 133-135, 2008.

[31] Y. B. Yuan, X. Z. Hu, X. D. Cai et al., “Test study on the stress of cable-clamp joint in Xuzhou Olympic Gymnasium”, Low Temperature Building Technology, Vol. 35, No. 8, pp. 81-83, 2013.

[32] Z. H. Chen, X. X. Wang, H. B. Liu, et al., “Failure test of a suspendome due to cable rupture”, Advanced Steel Construction, Vol. 15, No. 1, pp 23-29, 2019.

[33] R. Z. Yan, Z. H. Chen, X. D. Wang et al., “Analysis of static performances of suspen-dome structures considering the random errors influence of prestressing construction”, Spatial Structures, Vol. 21, No. 1, pp. 39-89, 2015.

[34] Y. Chen, J. Feng, and R. J. Ma, “A unified criterion for movability of kinematically indeterminate frameworks with symmetry”, Journal of Building Structures, Vol. 36, No. 6, pp. 101-116, 2015.

[35] Z. H. Chen, “Suspen-dome Structure”, Science Press, Beijing, China, 2010.

[36] A. Petcherdchoo, “Probability-based sensitivity of service life of chloride-attacked concrete structures with multiple cover concrete repairs”, Advances in Civil Engineering, Vol. 2018, 4525646.1-4525646.17, 2018.

[37] G. C. Wu, “Probability and Mathematical Statistics”, China Renmin University Press, Beijing, China, 2011.

[38] M. Zhang, Y. P. Liu, Z. X. Yu, et al. “Study of seismic resistance of Kiewit-8 dome considering key structural design parameters”, Advanced Steel Construction, Vol., 15, No. 4, pp. 386-397, 2019.

[39] Y. Ding, T. L. Zhang, “Research on influence of member initial curvature on stability of single-layer spherical reticulated domes”, Advanced Steel Construction, Vol. 15, No. 1, pp. 9-15, 2019.

[40] J. C. Yan, F. Fan, and Z. G. Cao, “Research on influence of initial curvature of members on elasto-plastic stability of reticulated shells”, Journal of Building Structures, Vol. 33, No. 12, pp. 63-71, 2012.

[41] Ministry of Housing and Urban-Rural Development of the People's Republic of China, “JGJ 7-2010 Technical Specification for Space Frame Structures”, Architecture & Building Press, Beijing, China, 2010.