Vol. 21, No. 2, pp. 110-118 (2025)
A REVIEW ON: MECHANICAL, AND MICROSTRUCTURAL BEHAVIORS OF
DUPLEX AND AUSTENITIC STAINLESS-STEEL REINFORCING REBAR
AFTER EXPOSURE TO ELEVATED TEMPERATURES
Haitham Abdallah Khamis AL Adawani 1, Tuan Zaharinie Tuan Zahari 1, 2, * and
Muhammad Khairi Faiz bin Ahmad Hairuddin 1, 2
1 Department of Mechanical Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2 Centre of Advanced Manufacturing and Material Processing, Universiti Malaya,50603 Kuala Lumpur, Malaysia
*(Corresponding author: E-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.)
Received: 20 March 2024; Revised: 20 December 2024; Accepted: 20 December 2024
DOI:10.18057/IJASC.2025.21.2.2
![]() |
Export Citation: Plain Text | RIS | Endnote |
ABSTRACT
The utilization of structural stainless steel has risen due to its attractive aesthetic and architectural features as well as its durability. This paper examines previous research on the use of duplex and austenitic stainless steel reinforcement bars in reinforced concrete structures, focusing on their material properties affected by prolonged exposure to high temperatures and different cooling methods. It is important to know that for duplex stainless steel reinforcing rebar, the manufacturing process plays a critical role in preventing the formation of excessively brittle phases, such as sigma phases, within the microstructure. Duplex stainless steel rebars exhibit a less stable microstructure, making them more susceptible to changes under similar conditions compared to austenitic rebars. This paper provides a comprehensive review of the literature on reinforcing bars comprised of duplex and austenitic stainless steel for use in reinforced concrete constructions.
KEYWORDS
Structural stainless steel, Duplex and austenitic stainless-steel reinforcing rebar, Mechanical properties, High temperatures, Manufacturing process
REFERENCES
[1] Santonen, T., Stockmann-Juvala, H., & Zitting, A. (n.d.). Review on toxicity of stainless steel.
[2] Mustapha Karkarna, Y., Bahadori-Jahromi, A., Zolghadr Jahromi, H., Halliwell, E., & Mohammad Rabi, M. (2022). Reinforced Concrete Design with Stainless Steel. In Reinforced Concrete Structures - Innovations in Materials, Design and Analysis. IntechOpen. https://doi.org/10.5772/intechopen.106327 [3] Zhu S.Y. and Qiu C.X., “Performance-based plastic design of self-centering steel braced frame”, Proceedings of the 2nd International Conference on Performance-based and Life-cycle Structural Engineering (PLSE 2015), Brisbane, QLD, Australia, 1259-1259, 2015.
[3] Stoica, M., Alexe, P., Dinica, R., & Carac, G. (2012). Electrochemical Behaviour of AISI 304 Stainless Steel Immersed in Mixtures Consisting by Biocide and Fungal Suspensions. In Food Industrial Processes - Methods and Equipment. InTech. https://doi.org/10.5772/30839.
[4] Stainless steel reinforcement bar the sustainable cost effective choice for concrete infrastructure knowledge for a brighter future. (n.d.).
[5] Muwila, A. (2006). The Effect of Manganese, Nitrogen and Molybdenum on the Corrosion Resistance of a Low Nickel (<2 wt%) Austenitic Stainless Steel.
[6] Steels, A. (n.d.). Atlas TechNotes. www.atlassteels.com.au
[7] Markeset, G. (2009). SINTEF Building and Infrastructure Gro Markeset Stainless steel reinforcement in con-crete structures-State of the art COIN Project report 4-2008. www.coinweb.no .
[8] Kahar, Dr. S. D. (2017). Duplex Stainless Steels-An overview. International Journal of Engineering Research and Application, 07(04), 27–36. https://doi.org/10.9790/9622-0704042736
[9] The Use of Stainless Steel for the Construction Industry. (2020).
[10] Dainezi, I., Borges, S. H., & Mariano, N. A. (2023). Effect of Precipitation of Alpha Line and Sigma Phases on the Microstructure and Corrosion Resistance of the Duplex Stainless Steel SAF 2205.
[11] Cronemberger, M. E. R., Nakamatsu, S., Rovere, C. A. Della, Kuri, S. E., & Mariano, N. A. (2015). Effect of cooling rate on the corrosion behavior of as-cast SAF 2205 duplex stainless steel after solution annealing treatment. Materials Research, 18, 138–142. https://doi.org/10.1590/1516-1439.352114.
[12] Mohammed, A. M., Shrikrishna, K. A., & Sathiya, P. (2016). Effects of post weld heat treatment on friction welded duplex stainless-steel joints. Journal of Manufacturing Processes, 21, 196–200. https://doi.org/10.1016/J.JMAPRO.2015.10.005
[13] Rabi, M., Shamass, R., & Cashell, K. A. (2022). Structural performance of stainless steel reinforced concrete members: A review. In Construction and Building Materials (Vol. 325). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2022.126673.
[14] Rosso, M., Peter, I., & Suani, D. (2013). About heat treatment and properties of Duplex Stainless Steels. www.journalamme.org
[15] Outokumpu, ©. (n.d.). Handbook of Stainless Steel.
[16] Rabi, M. M. (2019). Analysis and design of stainless steel reinforced concrete structural elements.
[17] Gardner, L. (2005). The use of stainless steel in structures. In Progress in Structural Engineering and Materials (Vol. 7, Issue 2, pp. 45–55). https://doi.org/10.1002/pse.190.
[18] Covert, R. A., & Tuthill, A. H. (n.d.). Pages 506-517 Copyright© International Association for Food Protection, 6200 Aurora Ave (Vol. 20, Issue 7).
[19] Rehman, F.-U. (2022). Mechanical tensile testing and metallurgical investigation of the residual properties of stainless-steel reinforcing bar after exposure to elevated temperatures.
[20] Avesta Welding. (2009). The Avesta welding manual : practice and products for stainless steel welding. Avesta Welding.
[21] Markeset, G., Rostam, S., & Klinghoffer, O. (2006). Guide for the use of stain-less steel reinforcement in concrete structures.
[22] Version, E. (2014). Stainless steels-Part 1: List of stainless steels.
[23] Mcgurn, J. F. (n.d.). Stainless Steel Reinforcing Bars in Concrete.
[24] Pardeshi, R., Thakur, B., & Parghi, A. (2020). Seismic investigation of longitudinally aligned shape memory alloy-stainless steel reinforced concrete column. IOP Conference Series: Materials Science and Engineering, 814(1).
[25] Https://www.aisc.org/publications/steel-standards/stainless-steel- standards/?_gl=1*hkj6z9*_gcl_au*NzY2NDM5MTkxLjE3MzMxMDg3Njc.*_ga*MTczNjcyNzQzMC4xNzI5NjY0OTE2*_ga_97VGG712JL*MTczMzEwODc 2Ny4xLjEuMTczMzEwODk1NS4zNS4wLjA
[26] Medina, E., Medina, J. M., Cobo, A., & Bastidas, D. M. (2015). Evaluation of mechanical and structural behavior of austenitic and duplex stainless-steel reinforcements. Construction and Building Materials, 78, 1–7. https://doi.org/10.1016/j.conbuildmat.2015.01.008.
[27] Di Sarno, L., Elnashai, A. S., & Nethercot, D. A. (2003). Seismic performance assessment of stainless steel frames. Journal of Constructional Steel Research, 59(10), 1289–1319. https://doi.org/10.1016/S0143-974X(03)00067-1
[28] Xu, C., Nehdi, M. L., Youssef, M. A., Wang, T., & Zhang, L. V. (2021). Seismic performance of RC beam-column edge joints reinforced with austenite stainless steel. Engineering Structures, 232. https://doi.org/10.1016/j.engstruct.2020.111824.
[29] Gardner, L., Bu, Y., Francis, P., Baddoo, N. R., Cashell, K. A., & McCann, F. (2016). Elevated temperature material properties of stainless-steel reinforcing bar. Construction and Building Materials, 114, 977–997. https://doi.org/10.1016/j.conbuildmat.2016.04.009 .
[30] Rabi, M., Shamass, R., & Cashell, K. A. (n.d.). Experimental investigation on the flexural behaviour of stainless steel reinforced concrete beams.
[31] Li, Q., Guo, W., Liu, C., Kuang, Y., & Geng, H. (2020). Experimental and Theoretical Studies on Flexural Performance of Stainless Steel Reinforced Concrete Beams. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/4048750.
[32] Li, Q., Cui, Y., & Wang, J. (2021). Basic mechanical properties of duplex stainless-steel bars and experimental study of bonding between duplex stainless-steel bars and concrete. Materials, 14(11). https://doi.org/10.3390/ma14112995.
[33] Rehman, F. U., Cashell, K. A., & Anguilano, L. (2022). Experimental Study of the Post-Fire Mechanical and Material Response of Cold-Worked Austenitic Stainless-Steel Reinforcing Bar. Materials, 15(4). https://doi.org/10.3390/ma15041564.
[34] EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. (2004).
[35] Giardina Jr, R., Wei, D., & Joseph Giardina, R. (2020). Ramberg-Osgood material behavior expression and large deflections of Euler beams Ramberg-Osgood material behavior expression and large deflections of Euler beams Journal Title XX(X):1-26. https://doi.org/10.1177/ToBeAssigned.
[36] Jr, K., & Msceng, R. (2001). Full-range Stress-strain Curves for Stainless Steel Alloys. http://www.civil.usyd.edu.au/.
[37] Mirambell, E., & Real, E. (2000). On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation. In Journal of Constructional Steel Research (Vol. 54). www.elsevier.com/locate/jcsr.
[38] EN 1993-1-4: Eurocode 3: Design of steel structures - Part 1-4: General rules – Supplementary rules for stainless steels. (2006).
[39] Baddoo, N. R. (2008). Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of Constructional Steel Research, 64(11), 1199–1206. https://doi.org/10.1016/j.jcsr.2008.07.011
[40] Tao, Z., Wang, X. Q., Hassan, M. K., Song, T. Y., & Xie, L. A. (2019). Behaviour of three types of stainless steel after exposure to elevated temperatures. Journal of Constructional Steel Research, 152, 296–311. https://doi.org/10.1016/j.jcsr.2018.02.020.
[41] Gao, X., Zhang, X., Liu, H., Chen, Z., & Li, H. (2018). Residual mechanical properties of stainless steels S30408 and S31608 after fire exposure. Construction and Building Materials, 165, 82–92. https://doi.org/10.1016/j.conbuildmat.2018.01.020.
[42] Fan, S., He, B., Xia, X., Gui, H., & Liu, M. (2016). Fire resistance of stainless-steel beams with rectangular hollow section: Experimental investigation. Fire Safety Journal, 81, 17–31. https://doi.org/10.1016/j.firesaf.2016.01.013.
[43] He, A., Liang, Y., & Zhao, O. (2019). Experimental and numerical studies of austenitic stainless steel CHS stub columns after exposed to elevated temperatures. Journal of Constructional Steel Research, 154, 293–305. https://doi.org/10.1016/j.jcsr.2018.12.005.
[44] Maslak, M., Pancikiewicz, K., Pazdanowski, M., Stankiewicz, M., Wozniczka, P., & Zajdel, P. (2023). Quantification of the Post-Fire Strength Retention Factors for Selected Standard Duplex and Lean Duplex Stainless Steel Grades. https://doi.org/10.20944/preprints202312.0286.v1.
[45] Chaudhari, A., Diwakar, N., & Kalpande, S. (n.d.). Mechanical characteristics, morphology and corrosion behavior of duplex stainless steel 2205. In Eur. Chem. Bull (Vol. 2023).
[46] Huang, Y., & Young, B. (2018). Mechanical properties of lean duplex stainless steel at post-fire condition. Thin-Walled Structures, 130, 564–576. https://doi.org/10.1016/j.tws.2018.06.018.
[47] Choudhary, B. K. (2014). Influence of strain rate and temperature on tensile deformation and fracture behavior of type 316L(N) austenitic stainless steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 45(1), 302–316.
[48] Tandon, V., Thombre, M. A., Patil, A. P., Taiwade, R. V., & Vashishtha, H. (2020). Effect of Heat Input on the Microstructural, Mechanical, and Corrosion Properties of Dissimilar Weldment of Conventional Austenitic Stainless Steel and Low-Nickel Stainless Steel. Metallography, Microstructure, and Analysis, 9(5), 668–677. https://doi.org/10.1007/s13632-020-00681-y
[49] Cai, Y., & Young, B. (2019). Structural behaviour of cold-formed stainless steel bolted connections at post-fire condition. Journal of Constructional Steel Research, 152, 312–321. https://doi.org/10.1016/j.jcsr.2018.03.024
[50] Li, X., Lo, K. H., Kwok, C. T., Sun, Y. F., & Lai, K. K. (2018a). Post-fire mechanical and corrosion properties of duplex stainless steel: Comparison with ordinary reinforcing-bar steel. Construction and Building Materials, 174, 150–158. https://doi.org/10.1016/j.conbuildmat.2018.04.110.
[51] Ban, H., Bai, R., Yang, L., & Bai, Y. (2019). Mechanical properties of stainless-clad bimetallic steel at elevated temperatures. Journal of Constructional Steel Research, 162. https://doi.org/10.1016/j.jcsr.2019.105704
[52] He, J., Lv, J., Song, Z., Wang, C., Feng, H., Wu, X., Zhu, Y., & Zheng, W. (2023). Maintaining Excellent Mechanical Properties via Additive Manufacturing of Low-N 25Cr-Type Duplex Stainless Steel. Materials, 16(22). https://doi.org/10.3390/ma16227125.
[53] Calmunger, M., Chai, G., Eriksson, R., Johansson, S., & Moverare, J. J. (2017). Characterization of Austenitic Stainless Steels Deformed at Elevated Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48(10), 4525–4538. https://doi.org/10.1007/s11661-017-4212-9.
[54] Wang, X. Q., Tao, Z., Song, T. Y., & Han, L. H. (2014). Stress-strain model of austenitic stainless steel after exposure to elevated temperatures. Journal of Constructional Steel Research, 99, 129–139. https://doi.org/10.1016/j.jcsr.2014.04.020
[55] Sathirachinda, N. (2010). Relative nobility of precipitated phases in stainless steels Evaluation with a combination of local probing techniques. KTH Chemical Science and Engineering, Royal University of Technology.
[56] Li, X., Lo, K. H., Kwok, C. T., Sun, Y. F., & Lai, K. K. (2018b). Post-fire mechanical and corrosion properties of duplex stainless steel: Comparison with ordinary reinforcing-bar steel. Construction and Building Materials, 174, 150–158. https://doi.org/10.1016/j.conbuildmat.2018.04.110
[57] Li, J., Du, C. W., Liu, Z. Y., Li, X. G., & Liu, M. (2018). Effect of microstructure on the corrosion resistance of 2205 duplex stainless steel. Part 1: Microstructure evolution during isothermal aging at 850 °C and evaluation of anticorrosion properties by methods of cyclic potentiodynamic polarization and electrochemical impedance tests. Construction and Building Materials, 189, 1286–1293. https://doi.org/10.1016/j.conbuildmat.2018.08.186.
[58] Byun, T. S., Yang, Y., Overman, N. R., & Busby, J. T. (n.d.). Thermal Aging Phenomena in Cast Duplex Stainless Steels.
[59] Raha, B. (2024). Useful Steps Recommended for the Production of Thick-Walled Duplex Stainless Steel Casting. International Journal of Metalcasting, 18(1), 505–511.
[60] Li. (1968). Microstructural development of duplex stainless steels during thermomechanical processing. https://doi.org/10.26190/unsworks/21479.
[61] Tan, H., Jiang, Y., Deng, B., Sun, T., Xu, J., & Li, J. (2009). Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750. Materials Characterization, 60(9), 1049–1054. https://doi.org/10.1016/j.matchar.2009.04.009
[62] Huang, H. Y., Wang, Y., & Xie, J. X. (2014). Stress-induced phase transformation characteristics and its effect on the enhanced ductility in continuous columnar-grained polycrystalline Cu-12wt%Al alloy. Materials Science and Engineering: A, 596, 103–111. https://doi.org/10.1016/j.msea.2013.12.041.
[63] Unnikrishnan, K., & Mallik, A. K. (1987). Microstructure—Strength relations in a duplex stainless steel. Materials Science and Engineering, 94(C), 175–181. https://doi.org/10.1016/0025-5416(87)90331-4.
[64] Chan KW, Tjong SC. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels. Materials (Basel). 2014 Jul 22;7(7):5268-5304. doi: 10.3390/ma7075268. PMID: 28788129; PMCID: PMC5455814.
[65] Tavares, S. S. M., da Silva, M. R., Pardal, J. M., Abreu, H. F. G., & Gomes, A. M. (2006). Microstructural changes produced by plastic deformation in the UNS S31803 duplex stainless steel. Journal of Materials Processing Technology, 180(1–3), 318–322. https://doi.org/10.1016/j.jmatprotec.2006.07.008
[66] Shamanth, V., S. Ravishankar, K., & Hemanth, K. (2019a). Duplex Stainless Steels: Effect of Reversion Heat Treatment. In Stainless Steels and Alloys. IntechOpen. https://doi.org/10.5772/intechopen.80007.
[67] Redjaïmia, A. (1992). Decomposition of Delta Ferrite in a Fe-22Cr-5Ni-3Mo-0.03C Duplex Stainless Steel. A Morphological and Structural Study. https://www.researchgate.net/publication/262724866
[68] Vicente, A. D. A., Botelho Junior, A. B., Sartori Moreno, J. R., Abreu Santos, T. F., Romano Espinosa, D. C., & Soares Tenório, J. A. (2019). Micro-Structural Characterization and Semi Quantitative Chemical Analysis of Ferrite and Austenite Phases in Duplex Stainless Steels. Available at SSRN 3309760.
[69] Nilsson, J. O. (1992). Super duplex stainless steels. Materials Science and Technology (United Kingdom), 8(8), 685–700. https://doi.org/10.1179/mst.1992.8.8.685
[70] Zhang, S., Shi, X., Liang, Y., Xu, H., Yan, C., Yan, W., Rong, L., & Yang, K. (2023). χ phase and its effect on the mechanical properties of a Mo-bearing high–Si austenitic stainless steel after aging at 650 °C. Journal of Materials Research and Technology, 23, 4280–4292. https://doi.org/10.1016/j.jmrt.2023.02.069.
[71] Ahn, Y. S., Kim, J. M., & Jeong, B. H. (2002). Effect of aging treatments and microstructural evolution on corrosion resistance of tungsten substituted 2205 duplex stainless steel. Materials Science and Technology, 18(4), 383–388. https://doi.org/10.1179/026708302225001642.
[72] Martins, M., & Casteletti, L. C. (2005). Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless-steel microstructure. Materials Characterization, 55(3), 225– 233. https://doi.org/10.1016/j.matchar.2005.05.008.
[73] Silva, R., Baroni, L. F. S., Kugelmeier, C. L., Silva, M. B. R., Kuri, S. E., & Rovere, C. A. D. (2017). Thermal aging at 475 °C of newly developed lean duplex stainless steel 2404: Mechanical properties and corrosion behavior. Corrosion Science, 116, 66–73. https://doi.org/10.1016/j.corsci.2016.12.014.
[74] Zhang, L., Jiang, Y., Deng, B., Zhang, W., Xu, J., & Li, J. (2009). Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel. Materials Characterization, 60(12), 1522–1528. https://doi.org/10.1016/j.matchar.2009.08.009.
[75] Pettersson, N., Wessman, S., Thuvander, M., Hedström, P., Odqvist, J., Pettersson, R. F. A., & Hertzman, S. (2015). Nanostructure evolution and mechanical property changes during aging of a super duplex stainless steel at 300°C. Materials Science and Engineering: A, 647, 241–248. https://doi.org/10.1016/j.msea.2015.09.009.
[76] He, Y. L., Zhu, N. Q., Lu, X. G., & Li, L. (2010). Experimental and computational study on microstructural evolution in 2205 duplex stainless steel during high temperature aging. Materials Science and Engineering: A, 528(2), 721–729. https://doi.org/10.1016/j.msea.2010.09.067.
[77] Zucato, I., Moreira, M. C., Machado, I. F., & Giampietri Lebrão, S. M. (2002). 385 Microstructural Characterization and the Effect of Phase Transformations on Toughness of the UNS S31803 Duplex Stainless Steel Aged Treated at 850 °C Microstructural Characterization and the Effect of Phase Transformations on Toughness of the UNS S31803 Duplex Stainless Steel Aged Treated at 850 °C. In Materials Research (Vol. 5, Issue 3).
[78] Dandekar, T. R., Kumar, A., Khatirkar, R. K., Singh, J., & Kumar, D. (2021). Effect of isothermal aging at 750 °C on microstructure and mechanical properties of UNS S32101 lean duplex stainless steel. Materials Today Communications, 29. https://doi.org/10.1016/j.mtcomm.2021.102753.
[79] Deng, B., Wang, Z., Jiang, Y., Sun, T., Xu, J., & Li, J. (2009). Effect of thermal cycles on the corrosion and mechanical properties of UNS S31803 duplex stainless steel. Corrosion Science, 51(12), 2969–2975. https://doi.org/10.1016/j.corsci.2009.08.015.
[80] Rovere, C. A. D., Santos, F. S., Silva, R., Souza, C. A. C., & Kuri, S. E. (2013). Influence of long-term low-temperature aging on the microhardness and corrosion properties of duplex stainless steel. Corrosion Science, 68, 84–90. https://doi.org/10.1016/j.corsci.2012.10.038.
[81] Angelini, E., De Benedetti, B., & Rosalbino, F. (2004). Microstructural evolution and localized corrosion resistance of an aged superduplex stainless steel. Corrosion Science, 46(6), 1351–1367. https://doi.org/10.1016/j.corsci.2003.09.024.